
I NAVAL POSTGRADUATE SCHOOL
Monterey, California

Lfl

I~D I.. c
7 A COMPUTER SIMULATION STUDY

OF A SENSOR-BASED HEURISTIC NAVIGATION
F OR THREE-DIMENSIONAL ROUGH TERRAIN

WITH OBSTACLES

by

CPT Do Kyeong Ok

June 1989

Thesis Advisor: Se-Hung Kwak

Approved for public release; distribution is unlimited

IIt

,,,

_II I I I I i I I I I I

Unclassified
Security Classification of this page

REPORT DOCUMENTATION PAGE
la Report Security Classification lb Restrictive Markings

Unclassified
2a Security Classification Authority 3 Distribution Availability of Report

2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.

s 4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)

6a Name of Performing Organization 6b Office Symbol ?a Name of Monitoring Organization

' Naval Postgraduate School (if Applicable) 52 Naval Postgraduate School
6c Address (city, state, and ZIP code) 7 b Address (city, state, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding/Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number

(If Applicable)

8c Address (city, state, and ZIP code) 10 Source of Funding Numbers

P Veeinat Number I ojact No Taik No I Wo Unit Aesion No

1 1 Title (Include Security Classification)

A COMPUTER SIMULATION STUDY OF A SENSOR-BASED HEURISTIC NAVIGATION FOR THREE-DIMENSIONAL
ROUGH TERRAIN WI TH OBSTACLES

12 Personal Author(s)
Ok, Do Kyeong

13a Type of Report 13b Time Covered 14 Date of Report (year, month,day) 15 Page Count
Master's Thesis From To June 1989 1 123

16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the De artment of Defense or the U.S. Government.
17 Cosati Codes I 8 Subject Terms (continue on reverse if necessary and identify by block number)
Field Group Subgroup Sensor-Based Path Plan, Heuristic Navigation, Obstacle Avoidence,

IAutonomous Vehicle

19 Abstract (continue on reverse if necessary and identify by block number
A search strategy for autonomous vehicle navigation over three-dimensional digitized terrain containing

obstacles is presented and studied in this thesis. The vehicle possesses no a priori information about terrain.
Using only information obtained through a sensor which has a limited sensing range, the vehicle navigates a goal
utilizing heuristics adopted from human behavior. Simulation results produce a near-optimal path solution in a
very short time. Simulation results also prove that this strategy is suitable for real-time navigation under
dynamically changing or unknown environments.

20 Distnbution/Availability of Abstract 21 Abstract Security Classification

IT, unclassified/unlimaied 01same as repon 11DTIC users Unclassified
22a Name of Responsible Individual 22b Telephone (Include Area code) 22c Office Symbol

Prof. Se-Hune Kwak (408) 646-2168 Code 52Kw
DD FORM 1473. 84 MAR 83 APR edition may be used until exhausted security classification of this page

All other editions are obsolete Unclassified

to

V

Approved for public release; distribution is unlimited.

A COMPUTER SIMULATION STUDY OF A SENSOR-BASED
HEURISTIC NAVIGATION FOR THREE-DIMENSIONAL ROUGH

TERRAIN WITH OBSTACLES

by

Do Kyeong Ok
Captain, Korean Army

B.S., Korea Military Academy, 1982

Submitted in partial fulfillnimt of the requirements for

the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1989

Author:
Do Kyeong Ok

Approved by: -
Se- u g Kwa, Thesis Advisor

N . gLe ,Secop Reader

Robert B. McGhee, Chairma epartment of Computer Science

Kneale T. Marshall, Dean of Inonation and Policy Sciences

ABSTRACT

A search strategy for autonomous vehicle navigation over three-dimensional

digitized terrain containing obstacles is presented and studied in this thesis. The

vehicle possesses no a priori information about terrain. Using only information

obtained through a sensor which has a limited sensing range, the vehicle navigates a

goal utilizing heuristics adopted from human behavior. Simulation results produce a

near-optimal path solution in a very short time. Simulation results also prove that

this strategy is suitable for real-time navigation under dynamically changing or

unknown environments.

Aacession For

NTIS GRA&I
DTrC TAB "\
UnAnounced
Justfit f Cat inn

I l By - -.

;Dist . :,I

....

iii

TABLE OF CONTENTS

INTRODUCTION 1

A. BACKGROUND AND BRIEF PROBLEM STATEMENT 1

B. THESIS ORGANIZATION 3

II. SURVEY OF PREVIOUS WORK 4

A. INTRODUCTION 5

B. PATH PLANNING ALGORITHMS 5

1. A HIERARCHICAL ORTHOGONAL SPACE APPROACH

TO THREE-DIMENSIONAL PATHPLANNING 5

2. NAVIGATIONS FOR AN INTELLIGENT MOBILE

ROBOT 5

3. ROBOT NAVIGATION IN UNKNOWN TERRAINS

USING LEARNED VISIBILITY GRAPHS 6 -

4. LEARNED NAVIGATION PATHS FOR A ROBOT

IN UNEXPLORED TERRAIN 7

5. AUTOMATIC PATH PLANNING FOR A MOBILE

ROBOT USING A MIXED REPRESENTATION OF

FREE SPACE 7

C. SUMMARY 8

Ill. DETAILED PROBLEM STATEMENT 9

A. INTRODUCTION 9

13. AUTONOMOUS VEHICLE MODEL 9

i '

C. TERRAIN MODEL 10

D. OBSTACLE MODEL 11

E. SENSOR MODEL 12

F. SIMULATION FACILITIES 12

1. LANGUAGE 12

2. SYMBOLICS LISP MACHINE 12

G. SUMMARY 13

IV. NAVIGATION BY PATH PLAN 14

A. INTRODUCTION 14

B. CONVENTIONS 14

C. HEURISTICS 15

D. PATH PLAN STRATEGY 16

E. MAIN PATH PLAN 19

1. Local Cost Function 21

a. Transitional Cost 21

b. Rotational Cost 26

2. Estimation Function 29

3. Evaluation Function 3.5

F. DETERMINATION OF CONTROL MODE 36

G. DETOUR PATH PLAN 40

1. Obstacle marker 40

2. Obstacle Evaluation Function 47

I. SUMMARY 53

V. SIMI'I.ATION AND E\ALUATION 57

4

A. INTRODUCTION 57

B. SIMULATION RESULTS 57

1. SIMULATION RESULTS WITHOUT EXPLICIT

OBSTACLES 58

2. SIMULATION RESULTS WITH EXPLICIT OBSTACLES 58

C. COMPARISON WITH A SEARCH 66

1. COST OF PATH 67

2. MAXIMUM NUMBER OF OPEN NODES 67

3. TIME TO FIND PATH 73

D. SUMMARY 73

VI. SUMMARY AND CONCLUSIONS 75

A. RESEARCH CONTRIBUTIONS 75

B. RESEARCH EXTENSIONS 75

APPENDIX - PROGRAM LIST 77

LIST OF REFERENCES 112

INITIAL DISTRIBUTION LIST 114

vi

ACKNOWLEDGMENT

Thanks God!. I thought I could not write a thesis because I was a dummy.

God encouraged me unceasingly and Se-Hung Kwak, my thesis advisor, helped and

taught me with my thesis preparation. James J. Zanoli, my friend, corrected my

English.

I greatly appreciate their assistance. Also, I give a lovely thanks to my wife,

Hee-Jung.

4

*Idi

• .. , i I I I

I. INTRODUCTION

A. BACKGROUND AND BRIEF PROBLEM STATEMENT

Path planning for an autonomous vehicle is, conceptually, classified into two

categories. One is to perform path planning without a priori terrain information.

The other is to perform path planning with a priori terrain information. The first

type of path planning requires single or multiple sensing devices, such as a vision

sensor, an ultra-sonic sensor, or a contact sensor. The latter type does not require

sensing device.

Path planning with a priori knowledge of the terrain is easily adopted for long

range path planning based on a map which contains time-invariant information.

Because information about the terrain is available prior to the search, well

established graphic search strategy such as the A search strategy that minimizes

the overall cost can be used to find the optimal path.

However. path planning with a priori information of terrain may not be

practically suitable depending on the size of the problem. It usually demands huge

resources such as computational time and space even though the problem size is

relatively small. '1 herefore. it is more suitable for oft-line path planning than for

on-line planning.

Sometimes. a priori information is not available because of technical

difficulties or tim,-variant characteristics of the environment. Such examples

include information about deep underwater, a piece of terrain inside enemy occupied

territory, and a nuclear power plant disaster. In these caeS, path planning without

a priori information of terrain is more suitable. Since sensors are carried on board

S... m m umnunm mm nm l

he vehicle, the vehicle can easily adapt to a dynamically changing environment

without using a priori information. Since the vehicle handles only localized

information, the requirement for computational resources is usually small and

almost constant regardless of the size of the problem.

Finding the optimal path using local information gathered by a sensor is very

difficult. Naturally, the most important issue of the path planning without a priori

information of terrain is how similar the path obtained by the algorithm is to an

optimal path. However, if no a priori information is obtainable, then the path

planning without a priori information is the only way to find a reasonable (or a

near-optimal) path.

The other issue of the path planning without a priori information of terrain

how to overcome a position that produces a local minimum (or maximum) value for

an evaluation function whose value is optimized by a search. Though the depth-first

search and the hill climb search strategy. which are suitable for the path plan

without a priori information of terrain. systematically overcome thp local maximum

(and minimum) problem with backtracking. their performance is not very good.

A search strategy called PATH PLAN is developed in this study for

autonomous vehicle navigation in situations where no a priori terrain information is

available. To achieve better performance than that of either the depth-first or the

hill climb search strategy. PATH PLAN adopts flavors of the hill climb and the A

search strategy a well as human heuristics. Though it utilizes local information

gathered by the sensor, it uses both an estimation function and a cost fuiikt*,6 like

the A search strategy. However. it does not use the agenda required in the A

search strat',gv or the hill climb search strategy.

..= ,..unni Ini un n unll • INI NNN min

B. THESIS ORGANIZATION

Chapter II reviews previous work on path planning search strategy.

Chaptt.' ill presents a detailed problem statement for this thesis. Four models,

which are the autonomous vehicle model, the terrain model, the obstacle model, and

the sensor model, are introduced. The simulation facilities are also described.

A detailed description of PATH PLAN is presented in Chapter IV. This

chapter explains how PATH PLAN, without a priori terrain information, directs an

autonomous vehicle over three-dimensional terrain. It also describes how PATH

PLAN overcomes local maximum (and minimum) problems and avoids obstacles.

Simulation results are presented in Chapter V. Five simulations were run

under various terrain conditions. In order to evaluate the performance of PATH

PLAN., paths obtained with PATH PLAN are compared with optimal paths

obtained with A search strategy. Global terrain information was made available to

the A search strategy. but this information was not utilized by PATH PLAN.

Finally. Chapter VI summarizes the PATH PLAN strategy developed in this

research and suggests area where further work could be done. An appendix contains

the PATH P1 AN program which wa written in LISP and implemented on a

Svmiholics, 367) LISP machine with a high-resolution color monitor.

O

II. SURVEY OF PREVIOUS WORK

A. INTRODUCTION

An autonomous vehicle must be able to reach a goal in an unexplored

environment while avoiding collisions with obstacles. An early method for such

navigation was invented for the robot SHAKEY by Hart, Nilsson, and Raphael[Ref.

1] and by Nilsson[Ref. 21. This method assumes that the locations of all obstacles in

the environment are known and that the obstacles can be approximated by

polyhedral shapes. A visibility graph is created among the vertices of the polyhedra

and the vehicle's and the target's positions such that any two connected nodes in

the graph are mutually visible. The shortest path in the graph, connecting the robot

to its target. is a collision-free path for vehicle. SHAKEY's method of navigation.

however, is not always workable in an unexplored environment. An autonomous

vehicle will have to move about to locate all the barriers and the obstacles prior to

forming its world model. Lozano-Perez and Wesley[Ref. 3] have extended

StAKEY's method to the problem of collision-free movements of a robot

Iiianipulator. Lozano-Perez[Ref. 4] provides a comprehensive treatment of this

problem with many references. Brooks[Ref. 51 describes another algorithm for path

finding iri a cluttered but known environment.

Other approaches to the navigation problem, based on visual identification of

obstacles in a scene. have been discussed by Moravec[Ref. 6; Ref. 7; Ref. 8]. Giralt.

Sobhck. ard Chatila (e". 9',. and ThompsonlRef. 10]. The JPL robot described by

Thompson forns a terrain model using vision as the primary source of data. This

modol cons s of a set of nontraversable walls built out of polygonal curves. The

• • . • i i l l il

robot HILARE, discussed by Giralt, Sobek, and Chatila, operates along similar

lines. A vision-guided robot is Moravec's, which uses stereo vision to locate objects

around it. It plans a collision-free path around these objects, follows the path for

abi, Jt a meter, and then restarts with scene analysis. This type of navigation can be

used in an unexplored environment but appears to be rather slow.
4

As mentioued, there are many attempts for path planning. In this chapter, five

previous path planning algorithms are introduced. These algorithms are most

related to PATH PLAN.

B. PATH PLANNING ALGORITHMS

I. A HIERARCHICAL ORTHOGONAL SPACE APPROACH TO

THREE-DIMENSIONAL PATH PLANING

This algorithm is discussed by Wong and Fu[Ref. 11]. They present a

methodology for three-dimensional collision-free path planning in which planning is

done in the three-dimensional environment. Collision checking is done in each of

the three orthogonal two-dimensional subspaces using primitive path segments. A

hierarchical-path search method is used to speed up the search process. Their

approach forms the basis for spatial planning in environments where no a priori

knowledge is assumed. The tnrc, orthogonal two-dimensional projections are

readily obtained from three orthogonal cameras in simple environments.

2. NAVIGATIONS FOR AN INTELLIGENT MOBILE ROBOT

This algorithm is described by Crowley[Ref. 12]. He describes a

navigation system for a mobile robot equipped with a rotating ultrasonic range

sensor. This navigation system is based on a dynamically maintained model of the

local environment, called the composite local model. The composite local model

intearates information from the rotating range sensor, the robot's touch sensor, and

..,-,..,.,.,..n. mi mmllnilibmnn mmm innm 5

a pre-learned global model as the robot moves through its environment. He

describes techniques for constructing a line segment description of the most recent

sensor scan(the sensor model), and for integrating such descriptions to build up a

model of the immediate environment(the composite local model). The estimated

position of the robot is corrected by the difference in position between observed

sensor signals and the corresponding symbols in the composite local model. He also

describes a learning technique where the robot develops a global model and a

network of places. The network of places is used in global path planning, while the

segments are recalled from the global model to assist in local path execution. His

system is useful for navigation in a finite, pre-learned domain such as a house,

office, or factory.

3. ROBOT NAVIGATION IN UNKNOWN TERRAINS USING

LEARNED VISIBILITY GRAPHS

This algorithm is described by Oommen, Iyengar, Rao, and

Kashyap[Ref. 13]. They discuss the problem of navigating an autonomous mobile

robot through unexplored terrain containing obstacles. They present an algorithm

for navigating a robot in unexplored terrain that is arbitrarily populated with

disjoint convex polygonal obstacles in the plane. Their algorithm is proven to yield

a convergent solution to each path of traversal. Initially, the terrain is explored

using a rather primitive sensor, and the paths of traversal made may be

near-optimal. The visibility graph that models the obstacle terrain is incrementally

constructed by integrating the information about the paths traversed so far. At any

stage of learning, the partially learned terrain model is represented as a learned

visibility graph. and it is updated after each traversal. They prove that the learned

visibility graph converges to the visibility graph with a probability of one when the

--Illill lia l Ii I I

source and destination points are chosen randomly. Ultimately, the availability of

the complete visibility graph enables the robot to plan globally optimal paths and

also obviates further usage of sensors.

4. LEARNED NAVIGATION PATHS FOR A ROBOT IN

UNEXPLORED TERRAIN

This algorithm is presented by Iyengar, Jorgensen, Rao, Weisbin[Ref.

141. They propose a method of robot navigation which requires no pre-4earned

model, makes maximal use of available information, records and synthesizes

information from multiple journeys, and contains concepts of learning that allow for

continuous transition from local to global path optimum. Their model of the terrain

consists of a spatial graph and a Voronoi diagram. Using acquired sensor data,

polygonal boundaries containing perceived obstacles shrink to approximate the

actual obstacles surfaces, free space for transit is correspondingly enlarged, and

additional nodes and edges are recorded based on path intersections and stop points.

Navigation planning is gradually accelerated with experience since improved global

map information minimizes the need for further sensor data acquisition. Their

method assumes obstacle locations are unchanging, navigation can be successfully

conducted using two-dimensional projections, and sensor information is precise.

5. AUTOMATIC PATH PLANNING FOR A MOBILE ROBOT USING

A MIXED REPRESENTATION OF FREE SPACE

This algorithm is proposed by Kuan, Brooks, Zamiska, and M. Das[Ref.

15]. They describe a path planning algorithm that uses a mixed representation of

free space in terms of two shape primitives: generalized cones and convex polygons.

Given a set of polygonal obstacles in space, their planning algorithm first identifies

the neighborhood relations among obstacles and uses these relations to localize the

.7

influence of obstacles on free space description and then to locate critical "channels"

and "passage regions" in the free space. The free space is then decomposed into

non-overlapping geometric-shaped primitives where channels are represented as

generalized cones similar to Brooks[Ref. 51. The passage regions are represented as

convex polygons. Based on this mixed representation of free space, their planning

algorithm uses two different strategies to path plan trajectories inside the channels

and passage regions.

C. SUMMARY

Much research has recently focused on path planning under three-dimensional

terrain with dynamically moving obstacles without a priori information of terrain.

This chapter surveyed five previous path planning algoritbrs which are related to

PATH PLAN. The detailed problem of PATH PLAN will be introduced in the next

chapter.

SI

Ill. DETAILED PROBLEM STATEMENT

A. INTRODUCTION

A search strategy for this thesis, PATH PLAN, is designed to guide the

S autonomous vehicle to a certain position under a circumstance that no a priori

information of the terrain is available. The autonomous vehicle is modeled as an

unmanned vehicle with a sensor which senses the terrain in a limited range, while

the terrain is modeled from a three-dimensional digitized terrain database. The

entire program is written in LISP, and it is executed on a Symbolics LISP machine.

B. AUTONOMOUS VEHICLE MODEL

The autonomous vehicle is an unmanned vehicle possessing some physical

limitations of conventional vehicles and some human-like characteristics. The

autonomous vehicle is modeled as follows:

1. It is not capable of locomotion over terrain slope exceeding a specified

threshold.

2. It remembers all places it has visited.

3. It consumes a certain amount of energy to move itself to a new position,

and it calculates this value.

4. It calculates the distance between its eight neighbor positions and the goal.

5. The size of autonomous vehicle is smaller than the cell size of terrain.

6. It moves to one of its eight neighbor positions at a time.

7. It moves along the direction of its heading.

8. It does not have a priori information about the terrain that will be

traversed.

• , . , el i l I I I

9. It is classified into two types: tank-type and jeep-type. Depending on the

vehicle type, different uphill and downhill slope limitations and different rotational

energy consumption values are used. Like a real tank and a real jeep, a tank-type

vehicle has higher slope limitations than a jeep-type vehicle, and a tank-type

vehicle spends more energy to rotate(change its heading) than a jeep-type vehicle

does.

C. TERRAIN MODEL

The terrain model adopted for this study is a sample of a Special Defense

Mapping Agency-produced digital terrain elevation database that was provided to

the Naval Postgraduate School by the United States Army Combat Developments

Experimentation Center(CDEC) at Fort Ord, California. The terrain sample covers

a one kilometer x one kilometer area of Fort Hunter-Liggett, California. The terrain

elevation, sampled at 12.5 meter increments, is available at one foot accuracy, but it

is only displayed using ten foot accuracy. To enhance the movement of the vehicle,

it is assumed that ten feet in real terrain is five feet in this terrain model. The

terrain is modeled as following:

1. It is digitized terrain consisting of 6400 cells grouped in an array of 80

columns x 80 rows.

2. Each cell represents a 12.5 meter x 12.5 meter portion of terrain.

3. The resolution of the terrain elevation is five feet.

4. Different colors are used for representing different elevations; the darker the

color, the higher the terrain elevation.

5. The start position, goal position and explicit obstacles are input by the user.

The start position is the cell that has a light blue circle containing the letter "S".

10

The goal position is the cell that has a dark blue circle containing the letter "G".

The explicit obstacles are the cells that are red.

D. OBSTACLE MODEL

Two types of obstacles are considered in this study, explicit and implicit.

An explicit obstacle is anything that can physically block a vehicle movement.4

Because there is very little relation between an explicit obstacle and vehicle

capability, a sensor alone can detect the presence of an explicit obstacle without

considering the vehicle status.

Explicit obstacles can be further classified into two sub-classes, static and

dynamic, depending on their temporal characteristics. Large man-made structures

such as building are examples of static objects, whereas small man-made objects

such as other vehicles are as dynamic objects. Human beings and animals can also

be considered dynamic objects.

An implicit obstacle is any virtual obstacle derived by the interaction between

the vehicle and the terrain. Because the maximum terrain slope that can be

traversed by the vehicle is determined by the vehicle capability and direction of

movement, the presence of an implicit obstacle depends on the vehicle capability

and status. Therefore. a sensor alone can not determine the presence of the implicit

obstacles without considering the vehicle status. Excessive slope areas or canyons

are examples.

The obstacle is modeled as follows:

1. The size of an obstacle is the same as the cell size of terrain.

2. There is no room for the autonomous vehicle to pass between an obstacle

and any obstacle neighboring obstacle located to the north, south. east. or west.

Vl

• , , , , , i I II 1

3. There is enough room for the autonomous vehicle to pass between an

obstacle and any neighboring obstacle located to the northeast, northwest,

southeast, or southwest.

E. SENSOR MODEL

The sensor of the autonomous vehicle functions in a limited sense, like a

human eye. It senses, with a limited range, the environment surrounding the

vehicle, and it processes the information. Thus, it provides limited but necessary

world information for the vehicle. This sensor is modeled as follows:

1. It senses the eight neighbor positions which surround the vehicle position.

2. It measures the distance and the elevation difference between the vehicle

position and its eight neighbor positions.

3. It detects the presence of the goal and the presence of explicit obstacles.

F. SIMULATION FACILITIES

1. LANGUAGE

Because system requirements and parameters were not specified well at

the beginning of this study, like most artificial intelligence applications, it was

expected to be extended and corrected several times . LISP is suited for ill-defined

problems not only because LISP is able to represent and manipulate complex

interrelationships among symbolic data[Ref. 161, but also because LISP is able to

ease program modification and extension. Therefore, LISP was adopted as the

implementation language for this study.

2. SYMBOLICS LISP MACHINE

The entire simulation program presented here is written in LISP and is

executed on a Symbolics 3675 LISP machine with a color monitor. The Symbolics

3600 family of advanced symbolic processing machines covers a full range of

12

symbolic processing power and functionality. The Symbolics machines allow users to

implement LISP with both speed and efficiency because they are uniquely designed

for LISP. The machines are faster and more efficient than conventional computers

with Von Neumann machine architecture for implementing applications ranging

from Artificial Intelligence, CAD/CAM, high resolution graphics, and expert system

research. The power, speed, and flexibility of the Symbolics LISP machines result

from the optimized hardware design to match the LISP programming

environment[Ref. 17].

G. SUMMARY

This chapter discussed models: the autonomous vehicle, the terrain, the

obstacle, and the sensor. For the program implementation, LISP was adopted

because of its properties for Artificial Intelligence applications, and the Symbolics

36.5 LISP machine was used to execute the programs because of its speed and

flexibility for LISP programs. Based on these defined models in this chapter, PATH

PLAN will be described in the next chapter.

. ,3

IV. NAVIGATION BY PATH PLAN

A. INTRODUCTION

This chapter describes PATH PLAN which is a search strategy for guiding an

autonomous vehicle over three-dimensional terrain to a goal position. Since a priori

information of the terrain is not always available to the autonomous vehicle because

of technical difficulties or time-variant characteristics of the environment, PATH

PLAN is designed to find a path in the dynamically changing environment without

using a priori information of the terrain. Basically, PATH PLAN is based on some

heuristics which are adopted from human behavior in order to make the behavior of

the vehicle si ma to that of a human being. PATH PLAN consists of two main

routines: MAIN PATH PLAN and DETOUR PATH PLAN.

B. CONVENTIONS

In order to discuss the PATH PLAN strategy, it is necessary to introduce the

following notations:

P(x.y) = position located at x and y in map coordinates.

Pstart = start position

Pga =croal position

Pk = autonomous vehicle position after its kth movement from start posit ion.

Pn = current vehicle position.

CPn+ 1 = one of candidate positions for Pn+l"

OM(P) = obstacle marker for Pn"

D(Pn.') = horizontal distance between Pn to P+.

D(PnI'nPgoal) = horizontal distance between Pn+1 to Pgoal"

1.1

PM(Pn+ 1) = path-marking value of P,+l.

= estimation function.

(P n+l = estimation function of position P

R = rotational cost to change vehicle heading.

R(Pn,Pn+I) = rotational cost from Pn to Pn+l"

A(Pn+i Pgoal) = minimum expected rotational cost from position Pn+l to

Pgoal"

T(Pn,Pn+I) = transitional cost from Pn to Pn+l"

C = local cost function.

C(Pn,Pn+I) = local cost consumed by vehicle to move from Pn to Pn±l

F = evaluation function.

OF = obstacle evaiuation function.

F(Pn+ 1) = evaluation function of position Pn+l1

C. HEURISTICS

Heuristics are any nonnumeric advice about what order to try the successors of

a state for further search[Ref. 18]. In order to make the behavior of a vehicle similar

to that of a human being attempting to find the goal without a map, the following

heuristics were adopted.

1. Move toward the goal whenever possible.

2. Try not to visit the positions which were already explored.

3. Detour a steep slope area.

4. Do not visit positions which make it impossible to return to the current

posit io|.

5. If it is in obstacle environment. travel along the obstacles until the

ervironment is cleared.

,1IS

D. PATH PLAN STRATEGY

Based on given assumptions, it is possible to use a local cost function because

an autonomous vehicle can calculate the energy required to move to its next

position(the autonomous vehicle model 3) and to use an estimation function because

an autonomous vehicle can measure distance between its eight neighbors and its

goal(the autonomous vehicle model 4). However, it is impossible to use an agenda

because an autonomous vehicle does not store parental information.It stores only

the position information of cells that it has visited(the autonomous vehicle model

2). Since there are no classical search strategies, as shown in Table I[Ref. 18]. that

fit this problem, a new search strategy, PATH PLAN, that uses both an estimation

function and a local cost function without using agenda unlike the A search

strategy was studied.

Figure 1 shows the flow-chart of PATH PLAN. PATH PLAN is divided into

two routines. MAIN PATH PLAN and DETOUR PATH PLAN. MAIN PATH

PLAN is based on the heuristic 1, 2, 3 and 4. This routine is used until the vehicle

encounters obstacles that block its movement. If the vehicle can not move closer to

the goal because obstacles block its movement. DETOUR PATH PLAN. based on

the heuristic 5 is used until the vehicle clears the obstacles. Since MAIN PATH

PLAN and DETOUR PATH PLAN are based on the completely different heuristics.

two different evaluation functions were used. They are as follows:

C + forMAIN PATH PLAN.

FOF for DETOUR PATH PLAN.

1(

Table 1. CLASSIC SEARCH STRATEGIES

Name of Uses Uses Uses Next state whose
estimation cost

search strategy agenda? function? function? successors are found

Depth-first A successor of the last
no no no state, else a successor

search of a predecessor

Breath-first The state on the agenda

searchyes no no the longest

Hill-climbing yes no The lowest-estimation
successor of the last state

(opfimization)

Best-first The state on the agenda
I yes yes no of the lowest estimation

search value

Branch-and yes no yes The state on the agenda
-bound of lowest total cost

The state on the agenda
of the lowest sum of

A* search yes yes yes of lue amd
estination value and
total cost

17

areivehil to

th ntpoion

Fiur . lo-hat fPATH PLANPAHLN

movevehile t

Before PATH PLAN permits a vehicle to move to a new position, it sets

CONTROL MODE either to "main" or to "detour" based on the position and the

direction of movement of the vehicle. If CONTROL MODE is set "main", then

MAIN PATH PLAN will be executed. Otherwise, DETOUR PATH PLAN will be

executed.

In order to guide a vehicle to its goal during the execution of MAIN PATH

PLAN, a potential energy concept is introduced. The goal location has the lowest

value, and the starting location has a larger potential energy value than that of the

goal. In this study, the potential energy is determined by the Euclidean distance

between the vehicle current location and the goal. Thus, it may be called distance

potential energy. For example, if the distance between the goal and a position is 100

m. then the distance potential energy of the position is 100. This energy unit is also

used to calculate the cost(or consumed energy) required to move the vehicle. For

instance, the cost to move an autonomous vehicle 12.5m over the flat terrain is 12.5.

Thus, the evaluation function returns a single number normalized by the distance

potential energy.

E. MAIN PATH PLAN

During PATH PLAN, the MAIN PATH PLAN routine is used until the

distance potential energy of the vehicle can not be reduced due to the obstacles: i.e..

when the vehicle can not move closer to the goal due to obstacles. Figure 2 shows

the procedure in MAIN PATH PLAN used to determine the next vehicle

position(P n+) After evaluating the eight neighbor positions of the current

position. a new position is chosen as P +l" This position war chosen because the

value returned by its evaluation function was the lowest among those returned by

th, eight neighbors of the current vehicle position, Pn" Since some of the eight

1 9

compute
C(Pn,CPn+1)

of 8 neighbors

compute E(CPn+ 1)

of 8 neighbors

F(CPn+l) <---
C(PnCPn+1)

+E(CPn+I)

determine Pn+l
whose F(CPn+I)

is lowest.1

Figure 2. Flow-Chart of MAIN PATH PLAN

20

neighbors can be obstacles, as shown in Figure 3, their evaluation function definition

is different from that of non-obstacle neighbors in order to prevent the vehicle from

moving into the obstacle. A very high value, 10,000, is assigned to its evaluation

function value when CPn+ 1 is determined to be an obstacle. If CPn+ 1 is not an

obstacle, the evaluation function is defined as the sum of the local cost function and

the estimation function.

1. Local Cost Function

The local cost function calculates the energy required to move the

vehicle from its current position(Pn) to one of its eight neighbors. It does not

include accumulated cost during the movement of the vehicle from the start position

to its current position.

The local cost is classified into two types: the transitional cost to move

an autonomous vehicle over three-dimensional terrain from Pn to CP n+1 and the

rotational cost required to change the heading of the vehicle. Therefore, the local

cost function is the sum of the transitional cost and the rotational cost. The local

cost function can be represented as follows:

C(P.nCP+ 1) = T(nCPn+1) + R(Pn,CPn+l) (4.2)

a. Transitional Cost

The transitional cost is defined as follows:

T(Pn.CPn+ 1) = slope-coefficient * D(Pn.CPn+ 1). (4.3)

21

X-axis

1 2 34 5

2 Cpn+1 CPn+1 P+

y

a 3 p~j P

S

4 CPn+1 CPn+l CPn+l

5

CPn+I candidate of Pn+1 where Pn(2,3)

obstacle Q goal

Figure 3. Candidates of Pn+J

22

The slope-coefficient is used to consider the energy needed to move a vehicle to a

location with different elevation. For example, the slope-coefficient is 2.0 if twice

the energy D(PnCPn+I), is spent as vehicle moves from P. to CPn+ 1. Thus, it is

1.0 if the elevation difference between Pn and CPn+ 1 is zero. The slope-coefficient

is generally influenced by the terrain slope-rate, but the slope-coefficient is not
w

exactly proportional to the slope-rate because a vehicle gains energy when

traversing a small downhill, and because a vehicle needs extra energy to reduce its

speed when traversing a large downhill.

The slope-coefficient is influenced by only the elevation difference

between two positions. It is independent of vehicle type. Each vehicle type is

restricted to a maximum slope that a vehicle can traverse. For example, a

tank-type autonomous vehicle can maneuver on a steep slope area while a

jeep-type autonomous vehicle can not.

In this study, the slope-coefficients are selected from the

slope-coefficient table for efficiency. Table 2 shows the slope-coefficients that are

used for the two types of autonomous vehicles in this simulation study. As shown in

the table, two different slope limitations are set according to the vehicle type.

Beyond the slope limitations, a very big slope-coefficient, 10,000, is assigned to

prevent the autonomous vehicle from moving across steep slope areas. The heuristic

3 is adopted in this way.

Because only localized information is utilized for finding a path,

there is a chance to meet local maximum (or minimum) problems. Such problems

occur when the uphill slope limitation and the downhill slope limitation of a vehicle

are different. Figure 4 shows two examples. Figure 4-a shows one example where a

vehicle can not get out of a ditch because its uphill slope limitation is less than its

23

Table 2. SLOPE-COEFFICIENT

slope-rate(r) slWocficient

(ft/m) jeep-type vehicle tank-type vehicle

r > 0.9 10,000.0 10,000.0

0.9 >= r > 0.6 10,000.0 2.2

0.6 >= r > 0.5 1.9 1.9

0.5 >= r > 0.3 1.6 1.6

0.3 >= r > 0.2 1.3 1.3

0.2 >= r > 0.0 1.0 1.0

0.0 >= r > -0.3 0.8 0.8

-0.3>= r > -0.5 1.2 1.2

-0.5>= r > -0.6 1.5 1.5

-0.6>= r > -0.9 10,000.0 2.0

-0.9>= r 10,000.0 10,000.0

24

d

d.d

a..downh.ll slp.....o.s agrthnuhllsoeliiao

..... d...down..ll.slope.l.m.tati.n

d = upwhill slope limitation

b. downhill slope limitaion is maler than uphill slope limitaion.

Figue 4.Loca Maxmum.nd Mn.mu .Proe.n

U.,25

downhill slope limitation. Figure 4-b shows another example where a vehicle can

not descend because its downhill slope limitation is less than its uphill slope

limitation. To solve these problems, symmetrical uphill slope and downhill slope

limitations are adopted. They prevent a vehicle from being trapped in a place where

it can not get out(the heuristic 4). In the implementation, the

TRANSITIONAL-COST function returns transitional cost from Pn to CPn+ 1*

b. Rotational Cost

The rotational cost is the amount of energy needed to change the

vehicle heading during movement from Pn to CPn+ 1. A moving object has the

property to maintaining the direction of its movement in accordance with Newton's

first law of motion [Ref. 19]. Therefore, the larger the turning angle, the larger the

rotational cost. Differing from the slope-coefficient, the rotational cost varies with

the type of an autonomous vehicle. Table 3 shows the rotational costs. A 45 degree

turning angle means either a 45 degree right turn or a 45 degree left turn. This turn

is based on the direction of the movement of the vehicle. Thus, there are only five

possible turning angles because an autonomous vehicle can go to only one of its

eight neighbors. This rotational cost makes an autonomous vehicle tend to maintain

its current direction of the movement.

Figure 5 shows that the white-colored path obtained without

considering the rotational cost and the black-colored path obtained with the

rotational cost are different in identical environment. When a portion of two paths

is overlapped each other, the portion is colored in black because of the drawing

sequence. In most cases, the path with the rotational cost is better than the path

without the rotational cost. In the implementation, the ROTATIONAL-COST

function returns rotational cost.

2 6

Table 3. ROTATIONAL COST(R(PnPn+))

rotational cost
turning

angle
(degree) jeep-type tank-type

vehicle vehicle

0 0 0

45 1 2

90 3 5

135 7 10

180 10 13

27

Figure 5. Comparison between Path Applied Rotational Cost and Path
not Applied Rotational Cost(Jeep Type Vehicle Case)

9

2. Estimation Function

The estimation function, A(CPn+I) is the minimum estimated

normalized energy consumed by a vehicle to moving from position CPn+ 1 to Pgoal'

The estimation function is defined by:

E(CPD+ 1)= D(CPn+ 1 ,Pgoal)+PM(CPn+ 1)+(CPn+ 1,Pgoal). (4.4)

D(CPn+l, Pgoa1) is represented in the following manner:

D(CPn+lP goal) = V" i x0 -x1 2 + IY0-y12 (4.5)

where CP n+ 1(x,y) and Pgoa(X0,Y0).

Because D(CPIn+lPgoal) is the horizontal distance from CPn+i to Pgoal"

D(CPn+1.Pgoal) forces a vehicle to move toward the goal. As the position CPn+ 1

gets closer to the goal, D(CPn+lP goal) becomes smaller. Thus, the value of the

evaluation function. F(Pn+I). tends to smaller. Therefore, there is a very high

chance for the vehicle to choose the closest position to the goal among its eight

neighbors as its next position(the heuristic 1). It is the same idea that a ball has a

tendency to roll to the bottom of a funnel(goal) when it is placed anywhere inside of

the funnel.

One problem of this type of a search is to meet a local maximum (or

minimum) as shown in Figure 6. If t(CPn+I) were defined as D(CPn+IpgoaI

only. the vehicle would be trapped in the area surrounded by the high elevation area

shown in Figure 6. Let's assume a situation Pn-1 is located at P(2.3). and Pn is

located at P(3.3). The goal position is P(6.3), and the autonomous vehicle is a

29

X-axis

1 2 3 4 5 6

1 12.5m

2

1 3
a
x
i 4
s

5

6

high elevated position

O current vehicle pos~firm

goal

Figure 6. Vehicle Surrounded by the High Elevation Area

30

jeep-type vehicle. P(2,2), P(3,2), P(4,2), P(4,3), P(2,4), P(3,4), and P(4,4) have

higher elevation than the other positions, and the local cost from Pn to any high

elevation area is larger than C(P,,P(2,3)) which is 22.5. The local costs and the

values of corresponding evaluation function are shown in Table 4. Under this

situation, the vehicle will move to P(2,3) because it provides the smallest evaluation

function value. This means that Pn+1' the next vehicle position, will be P(2,3).

When Pn+l is chosen as P(2,3), the values of the function of the neighbor positions

of Pn+l are shown in Table 5. From the table, the next position(Pn+ 2) will be

P(3,3) because it has the smallest evaluation function value. Thus, the situation will

be exactly the same as that of Table 4. There will be no further change in Table 4

and Table 5 while the vehicle moves back and forth between P(2,3) and P(3,3). In

this case. the vehicle never arrives at the goal.

The path-marking value is used to solve this problem. Basically, this

provides a way for the vehicle to memorize the positions visit,-d. The path-marking

value of each position is initially zero. Whenever the vehicle moves from Pn to

CPn+], a path-marking value, PM(CPn+ 1) which -is the same as C(Pn.CPn+). is

assigned to CPn+ 1. When the path-marking value is added to the evaluation

function. the evaluation cost of P(2,3) will be increased by 12.5. However, the other

positions will have the same evaluation costs as those in Table 4 because they have

not been visited by the vehicle. Table 6 depicts this situation. Because of the

increased evaluation cost of P(2.3), P(2,3) no longer has the lowest evaluation cost;

P(4.3) has the lowest. Thus, the vehicle will choose P(4,3) as the next vehicle

position. Pn+I Therefore, the path-marking value helps the vehicle to get out of a

trap bY making it resist going to the position which has been already visited by the

vehicle(tlho heuristic 2).

31

Table 4. CASE OF E(CPn+I) = D(CPn+IPgoal)

candidate C(Pn,CPn+I) (

of Pn+1 E(CPn+I) F(CPn+l) Pn+l

(CPn+1) T(Pn,CPn+l) R(PnCPn+I)

P(2,2) 50.0 7 51.5 108.5

P(3,2) 50.0 3 39.5 92.5

P(4,2) 50.0 1 30.0 81.0

P(4,3) 50.0 0 25.0 75.0
P(2,3)

P(4,4) 50.0 1 30.0 81.0

P(3.4) 50.0 3 39.5 92.5

P(2,4) 50.0 7 51.5 108.5

P(2,3) 12.5 10 50.0 72.5

* where Pn = P(3,3)

32

A

Table 5. CASE OF E(CPn+2) = D(CPn+2,Pgoal)

candidate C(Pn+I,CPl+2) A
E(CPn+2) F(CPn+2) Pn+2of Pn+2 T(Pn+l, R(Pn+I,

(CPn+2) CPn+2) CPn+2)

P(1,2) 17.7 1 63.7 82.4

P(2,2) 50.0 3 51.5 104.5

P(3,2) 50.0 7 39.5 96.5

P(3,3) 12.5 10 37.5 60.0
P(3,3)

P(3,4) 50.0 7 39.5 96.5

P(2.4) 50.0 3 51.5 104.5

P(1.4) 17.7 1 62.5 81.2

P(1,3) 12.5 0 63.7 76.2

where Pn+l = P(2,3)

33

Table 6. CASE OF E(CPn+1) = D(CPn+1,Pgoal) + PM(CPn+1)

candidate C(PnCPn+) 9(CPn+)

of Pn+I D(CPn+I, F(CP+I) Pn+l

(CPn+l) T(Pn,CPn+I) R(Pn,CPn+I Pgoal) PM(CPn+1)

P(2,2) 50.0 7 51.5 0.0 108.5

P(3,2) 50.0 3 39.5 0.0 92.5

P(4,2) 50.0 1 30.0 0.0 81.5

P(4,3) 50.0 0 25.0 0.0 75.0
____ __ ___ ___ __ _ ___ ___ __ ____ ___ __ ___ ___ P(4,3)

P(4,4) 50.0 1 30.0 0.0 81.0

P(3,4) 50.0 3 39.5 0.0 92.5

P(2,4) 50.0 7 51.5 0.0 108.5

P(2,3) 12.5 10 50.0 12.5 85.0

* where Pn = P(3,3)

31

In order to enhance the tendency for the vehicle to move towards the

goal, A(CPn+lPgoal), the minimum expected rotational cost from the position

CPn +to Pgoal is added to the definition of ,(CPn+i). No matter which path theCgoal'

vehicle chooses to follow to the goal, it will consume rotational cost of at leazt k,

the minimum expected rotational cost. To calculate A, the turning angle which is

necessary to make the vehicle heading align with the direction from CPn+ 1 to the

goal is used. If the turning angle is a, the minimum turning angle is derived by

following LISP formula:

(setf minimum-turing-angle (* (truncate (/ a 45)) 45)). (4.6)

Using the derived minimum turning angle, 1 is obtained from Table 3. In the

implementation. a two-dimensional array,INNER-ARRAY, is declared to store the

sum of the D(PPgoal) and PM(P) of each position.

3. Evaluation Function

The evaluation function is divided tor two cases. For the case that

CPn+ 1 is not an obstacle, it is the sum of the cost function and the estimation

function. For the case that CPn±1 is an obstacle, it is always 10,000 in order to

prevent tlhe vehicle from moving to the obstacle. Therefore, The evaluation function

of MAIN PATt PLAN is defined as follows:

C(P nCPn+ 1) + 1(CPn+ 1)

F(CP'i) = n CPn+ 1 is not an obstacle. (4.7)

t 10,000 if CPn+ 1 is an obstacle.

3.-)

From formulas (4.2), (4.4) and (4.7), the evaluation function of MAIN PATH

PLAN, when CPn+ 1 is not an obstacle, is represented u follows:

F(CPn+I) = T(Pn,CPn+I) + R(Pn,CPn+ 1) + D(CPn+lPgoal)

+ PM(CPn+ 1) + A(CPn+lPgoa)' (4.8)

In the implementation, the LOCAL-COST-FUNCTION function

returns, C(Pn,CPn+I), the local cost of CPn+ 1. The ESTIMATION-FUNCTION

function returns A(CPn+I), the minimum estimated cost of CPn+ 1 . The

EVALUATION-FUNCTION function returns F(CPn+I), the sum of the local cost

and the minimum estimated cost.

F. DETERMINATION OF CONTROL MODE

When the vehicle is blocked by a group of obstacles whose shape is concave,

such as that shown in Figure 7, MAIN PATH PLAN, which is based on the

heuristic 1, 2, 3 and 4, discussed so far can not find a path effectively. To clear the

obstacles, the evaluation function values of all the positions surrounded by the

obstacles have to be larger than those of the two corners of the concave

obstacle,P(3,4) and P(12,4). This is necessary because MAIN PATH PLAN makes

the vehicle move to the position that has the smallest evaluation value among its

eight neighbors. When the vehicle makes an initial contact with one of the obstacles,

the evaluation function value of P(3,4) or P(12,4) is larger than that of any inside

position because of the longer distance from the goal. However, as the vehicle visits

the inside positions one by one, their evaluation function values increase because the

path-marking value is added as the vehicle visits them. Therefore, the vehicle keeps

visiting all the inside positions until all the points have larger evaluation values

36

X-axis

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2

3

4

I - .
5V

a 8

s 9

10 __ __I°, I__

12

'4

E obstacle

O current vehicle position

O goal

Figure 7. Example for the Problem of MAIN PATH PLAN

37

than those associated with one of the corner positions, P(3,4) and P(12,4).

To solve this kind of problem, DETOUR PATH PLAN based on the heuristic

5 was introduced. Whenever the vehicle can not move a new position which is closer

to the goal than the current vehicle position due to the obstacles, DETOUR PATH

PLAN is used, instead of MAIN PATH PLAN to find the next position.

As mentioned earlier, CONTROL MODE is used for selecting the correct

routine(MAIN PATH PLAN or DETOUR PATH PLAN) during PATH PLAN.

Therefore, it is important to find the conditions when CONTROL MODE is set to

"main" or "detour". Figure 8 shows the conditions to set the CONTROL MODE.

The global variable *nearest-distance-before* is used to determine

CONTROL MODE. Because it is updated to D(PnPgoal) during MAIN PATH

PLAN and it is not updated during DETOUR PATH PLAN, it is used to check if

the vehicle moved closer to the goal during MAIN PATH PLAN.It is also used to

check if the vehicle cleared the obstacles during DETOUR PATH PLAN. This

variable provides an easy check because the vehicle cleared the obstacle when the

distance from the current vehicle position to the goal was less than

nearest-distance-before which was set to the distance between the vehicle

position at the last MAIN PATH PLAN execution and the goal.

There are two conditions required to set CONTROL MODE "detour" as

follows:

1. vehicle position(Pn) is in contact with the obstacle and

2. D(PnPgoal) is larger than the value of *nearetistance-before*;

i.e.. Pn is not closer to the goal than Pn-l"

If the vehicle position, P fails to satisfy either the first condition or the

second condition, then CONTROL MODE will be set to "main". Otherwise, it will

3I

n
is in contact rwidi a

<
' >-th

the connected obstacle
7

y

D(PnPgoal) n
>= *nearest-distance-

-before* ?

y

\V

CONTROL MODE CONTROL MODE

<-- "detour" <__ "inain"

*nearest-distance
-before*
<-- D(PnPgoal)

W

Figure 8. Determination of CONTROL MODE

39

X-axis

1 2 3 4 5

2 _ _._ _._ _._ _

2

a
3 M

...... _.....

obstacle vehicle path

*-- ---- > expecting vehicle path

Pn = P(3,2)

Figure 10. Example for the Corner of the Connected Obstacles

43

function is introduced. The candidate possessing the largest function value is chosen

as the new obstacle marker. The obstacle marker evaluation function is defined in

Table 7. If a candidate is not an obstacle, the function value i zero because the

obstacle marker must be placed on one of obstacles. If the candidate is one of

obstacles but it is not interlinked with OM(Pn) following the connections among the

obsLacles, the function valuc is also zero because the next obstacle marker has to be

interlinked with OM(Pn) in order to force vehicle movement along the connected

obstacles.

If a candidate is located at the same location of OM(Pn-1) , then the

function value will be 5 which is an arbitrary value chosen to give less favor to the

location; i.e., this value is low enough for the vehicle to discourage use of this

position again as the next obstacle marker. For the other cases,

D(OM(Pn),COM(Pn+I)) , the distance between OM(P.) and a candidate, is the

function value of COM(Pn+I). It is always larger than 5 because the minimum

distance between two obstacles is 12.5. Therefore, if one candidate is chosen as the

next obstacle marker, then the marker can be interlinked with OM(Pn).

There are several cases to interlink from OM(Pn) to OM(Pn+I)

resulting from numerous connected obstacle shapes. Figure 11 shows five typical

cases with respect to the number of steps needed to interlink two obstacle markers.

The step means the smallest number of obstacles passed in order to interlink from

the old obstacle marker to the new obstacle marker using only four directions which

are north, south, east, and west. Figure 11-a shows an example where no step is

necessary to interlink the old obstacle marker and the new obstacle marker because

they are located at the same position. Figure 11-b shows a one step example, and

Figure 1 1-c shows a two step example. Figure 1l--d shows a three step example. In

44

Table 7. OBSTACLE MARKER EVALUATION FUNCTION

F I obstacle marker
condition of OM(Pn+l) evaluation function

value

is not an obstacle 0

can not interlink with OM(Pn) 0

is same as OM(Pn) 5

D(OM(PnP,
the other cases OM(Pn+ 1))

[Z obstacle -) vehicle path 4 step

a. O step

d. 3 step e. 4 step

Figure 11. Steps to lInterlink OM(Pn+1) with OM(Pn)

46

this case, there are two possible candidates for the obstacle marker; i.e., one under

the new position and the other to the right side of the new position. Though both

look good, the latter, which is located farther than the former, is selected as the new

obstacle marker in order to help the vehicle advance. Thus, Figure 1 1-d shows a

three step example rather than one step example. Figure 11--e shows a four step

example. In this case, there are three possible candidates; i.e., the south, the east,

and the north obstacles with respect to the new position. In this implementation,

the east obstacle is chosen as the next obstacle marker. This implementation not

only reduces the number of steps considered but also simplifies the obstacle marker

evaluation function because the east obstacle has the longest distance from OM(Pn)

among three candidates. In the implementation, the GET-OBS-MARKER

function returns OM(Pn) for Pn"

2. Obstacle Evaluation Function

Based on the heuristic 5, the evaluation function of DETOUR PATH

PLAN is adopted to force vehicle movement along and clear of the obstacles when

the vehicle can not move closer to the goal due to the obstacles.

The obstacle evaluation function value is shown in Table 8. Like MAIN

PATH PLAN. the position that has the lowest obstacle evaluation function value

from among the obstacle evaluation function values of the eight neighbor positions

will be the next vehicle position. Therefore, if CPn+1 is an obstacle(either implicit

or explicit), then a very high value , 10,000, is assigned to the evaluation function

value to prevent the vehicle from moving to an obstacle. Also, if CP n+1is not in

contact with the connected obstacles, then 10,000 is assigned to the evaluation

function value in order to prevent the vehicle from moving away from the connected

obstacle while detouring connected obstacles. Because the new vehicle position must

47

Table 8. OBSTACLE EVALUATION FUNCTION

condition of CPn+1 OF(CPn+l)

is an obstacle 10,000
(implicit or explicit)

is not in contact with 10,000
the connected obstacles

OM(CPn+I) is not able to interlink 10,000

with OM(Pn) no more than 4 steps

the other cases R(PnCPn+I)

48

have an obstacle marker which is interlinked with the old obstacle marker no more

than four steps, 10,000 is assigned to CPn+ 1 if the obstacle marker of CPn+ 1 can

not be interlinked with OM(CPn) no more than four steps. Otherwise, the

rotational cost, R(Pn,Pn+ 1), is assigned to the obstacle evaluation function value.

The following two examples show that how the obstacle marker and the

obstacle evaluation function work for DETOUR PATH PLAN. The first example is

shown in Figure 12. Assume that a jeep-type vehicle is located at P(3,2) and has

traveled the route shown as an arrow in the figure and OM(Pn) is P(3,3). Obstacles

P(1,3), P(2.3), P(3,3) and P(3,4) are connected, and obstacles P(5,1),P(5,2) and

P(4,2) are also connected. Table 9 shows that Pn+1 is P(4,3) whose obstacle

evaluation value is the lowest among those of the eight neighbor positions. The

obstacle evaluation function values of P(3,3), P(3,2) and P(4,2) are 10,000 because

they are obstacles. The obstacle evaluation function values of P(2,1), P(3,1) and

P(41) are 10.000 because P(2,1). P(3.1) and P(4,1) are not in contact with the

connected obstacles. Therefore, P(2,2) and P(4,3) are the only candidates for the

next vehicle position because obstacle markers of P(2,2) and P(4,3) can be

interlinked to OM(Pn) with no more than four steps. Consequently the next vehicle

position. Pn+l' will be P(4,3) because R(P(3.2),P(4,3)), 1, is less than

R(P(3.2).P(2.2)). 10. The obstacle marker of P(4,3) is P(3,3), the same as the zero

step example in Figure 11-a. If the vehicle is still in "detour" CONTROL MODE

after the previous vehicle movement, Pn+2 will be P(4,4) as shown in Table 10. It

is in contact with the connected obstacles, and it requires a smaller rotational cost

than P(3.2) does. The obstacle marker of P(4,4) is P(3,4), also the same as a one

step example in Figure 1l-b. Thus, DETOUR PATH PLAN forces vehicle

movement along the connected obstacles.

49

X-axis

12 3 45

Pn

2

..

.a.
.

. . ..S.

.. . ..4.

.. ..5.

obstacle P....P.2...

.ehicle pat.P...P3.2

Fiue1.aml of .. DETUR.A..PLA

....

Table 9. OBSTACLE EVALUATION FUNCTION(OF(CPn+1)) IN FIGURE 12

CPn+I R(Pn,CPn+I) OF(CPn+1) Pn+I

P(3.1) 10,000

P(4,1) 10,000

P(4,2) 10,000

P(4,3) I P(4,3)

P(3,3) 10,000

Pk,.3) 10,000

P(.2,' 10 10

P(2.1 - 10,000

Table 10. OBSTACLE EVALUATION FUNCTION(OF(Pn+2)) IN FIGURE 12

CPn+2 R(Pn+I,CPn+2) OF(CPn+2) Pn+2

P(3,2) 10 10

P(4,2) 10,000

P(5,2) 10,000

P(3,3) 10,000 P(4,4)

P(3,3) 10,000

P(3.4) 10,000

P(4,4) 1

P(5.4) 10,000

7)'2

Another example is shown in Figure 13. Assume that the vehicle has

moved from P(4,2), P n-2' to P(4,2), Pn' via P(3,3), Pn-l. The obstacle markers of

Pn-2' Pn-1 and Pn are P(3,2), P(3,4) and P(4,3), respectively. If the obstacle

evaluation function in Table 8 does not include the third test condition whether the

obstacle marker is interlinked with OM(Pn) no more than four steps or not, Pn+1

can be either P(4,1) or P(5,2) because both P(3,1), the obstacle marker of P(4,1),

and P(5,3), the obstacle marker of P(5,2), are interlinked to OM(Pn). Moreover,

both FE(P(4,1)) and FE(P(5,2)) is 1 which is derived from the relational cost in

Table 8 . Therefore, there is a possibility that the vehicle may backtrack

unnecessarily to the positions already visited. However, if the obstacle evaluation

function includes the third condition, Pn+l becomes P(5,2). FE(P(4,1)) becomes

10,000 because P(3,1), the obstacle marker of P(4,1), is not interlinked to OM(P n)

with no more than four steps. Thus, FE(P(5,2)) is the lowest among the eight

neighbor positions as shown in Table 11. Thus, DETOUR PATH PLAN prevents

the vehicle from backtracking unnecessarily.

In DETOUR PATH PLAN, the obstacle evaluation function is the only

function to calculate the evaluation value as formula (4.1). In the implementation.

the EVALUATION-FUNCTIONI function returns F(CPn+I) for DETOUR

PATHt PLAN.

i. SUMMARY

This chapter discussed PATH PLAN based on human heuristics. Basically, it

consists of two parts: MAIN PATH PLAN and DETOUR PATtt PLAN. PATH

PLAN provide, a reasonable path for an the autonomous vehicle traversing over

thrc,-dimefsional terrain. though the autonomous vehicle does not have the global

informat ioi of torraini. It also makes the autonomous vehicle avoid obstacles - both

X-axis

1 2 3 4 5

a

............- -.......
. . ..S. I

..M.)

5.

obs. ..acle.P4,2
..... P.-

. ehice. pah.....4,.

Figure~.. .. 13.EamleofD.e..a.o.ofte.bsace.are

45

Table 11. OF(CPn+1) IN FIGURE 13

CPn+1 R(Pn,CPn+Il) OF(CPn+I) Pn+1

P(3,1) 10,000

P(4,1) 10,000

P(5,1) 10,000

P(5,2) I P(5,2)

P(5,3) 10,000

P(4,3) 10,000

P(3,3) 10 10

P(3,2~ - 10,000

• p

explicit obstacles and implicit obstacles - as well as the local maximum (and

minimum) problems. The next chapter presents the simulation results and an

evaluation of PATH PLAN.

56

V. SIMULATION AND EVALUATION

A. INTRODUCTION

The last chapter introduced PATH PLAN which provides a reasonable path

for an autonomous vehicle traversing three-dimensional terrain without using the

global information of the terrain traversed by the vehicle. This chapter presents the

similation results obtained from various terrain conditions encountered on Fort

Hunter-Liggett. Five simulation results are shown in this chapter with varying the

conditions of terrain and obstacles. In order to evaluate the performance of PATH

PLAN, paths derived by PATH PLAN and paths derived by the A search strategy

under the exactly same terrain and conditions are compared. Factors influencing the

heuristic power[Ref. 20] were especially noted in this evaluation.

B. SIMULATION RESULTS

Five simulation results are presented in this section. The first three simulation

results were obtained without explicit obstacles as changing terrain roughness, and

the latter two results were obtained with explicit obstacles as changing obstacle

complexity in order to test PATH PLAN on various terrain conditions. Each

simulation result shows two paths. One path is obtained with the tank-type

autonomous vehicle, and the other path is with the jeep-type vehicle. In order to

distiniguih two paths. two colors, white and black, are used. The former path is

colored in white, and the latter path is colored in black. When a portion of two

types of paths are overlapped, the portion is colored in black because the black path

denotin-, the latter path is drawn later than the white path denoting the formcr

pat h i .

1. SIMULATION RESULTS WITHOUT EXPLICIT OBSTACLES

Three simulation results were obtained without explicit obstacles. The

first simulation, which is shown in Figure 14, is performed on a flat area of terrain.

The second simulation, which is shown in Figure 15, is performed on a moderately

sloped area of terrain. The last simulation, which is shown in Figure 16, is

performed on a highly sloped area of terrain. The results of these simulations are

summarized in Table 12. The path obtained with the jeep-type autonomous vehicle

is slightly different from the path obtained with the tank-type autonomous vehicle

because the rotational cost and the uphill and downhill slope limitations are

dependent on the type of the vehicle. Generally, the total cost of the path for the

jeep-type autonomous vehicle is less than that for the tank-type autonomous

vehicle for two reasons. One is that a jeep-type vehicle spends less energy to turn

than a tank-type does, The other is that the path for a jeep--type vehicle is usually

shorter than the path for a tank-type vehicle because the jeep---type vehicle can

more easily correct its heading to the goal direction when its heading is disturbed by

obstacles or steep slope than the tank-type vehicle can. Figure 13, 14, and 15 reveal

that PATH PLAN finds very reasonable paths for an autonomous vehicles from

various terrain conditions without explicit obstacles.

2. SIMULATION RESULTS WITH EXPLICIT OBSTACLES

Two tests were performed on the same terrain while changing the

complexity of the explicit obstacle arrangement. One was performed on the terrain

with relatively simple explicit obstacle arrangement such as that shown in Figure

17. The other was performed with relatively complicated explicit obstacle

arrangement such as that shown in Figure 18. The results of two tests are

summarized in Tabl, 13. In Figure 17, the path for the jeep-type vehicle is slightly

Figure 14. Simulation on a Flat Area Without Explicit Obstacle,-

Figure 15. Simulation on a Moderately Sloped Area Without Explicit Obstacles

Figure 16. Simulation on a ighly Sloped Area Without Explicit Obstacles

Table 12. SIMULATION RESULTS WITHOUT EXPLICIT OBSTACLES

\

result
etime required to find

vehicle a path cost

simulation ts

tank 0.86 469.99
simulation

in Figure 14

jeep 0.83 466.99

simulation tank 1.22 786.72

in Figure 15
jeep 1.21 778.10

simulation tank 1.47 913.75

in Figure 16

jeep 1.35 875.05

(2

Figure 17. Simulation on Terrain With Simple Ex~plicit Obstacie

Arrangement

(A3

Figure 18. Simulation on Terrain With Complicated Explicit Obstacle
Arrangement

Table 13. SIMULATION RESULTS WITH EXPLICIT OBSTACLES

result
time required to find

vehicle a path cost

type (second)

simulation

tank 6.31 1619.38
simulation

in Figure 17
jeep 6.17 1577.57

tank 8.30 1632.24
simulation

in Figure 18
jeep 4.50 1154.78

different from the path for the tank-type vehicle during MAIN PATH PLAN.

However, in Figure 18 a portion of two paths is very different because DETOUR

PATH PLAN, when DETOUR PATH PLAN is initiated for the vehicles, chooses

different obstacle markers whose selections are greaty influenced by the initial

contact angle to a group of connected obstacles. Figure 17 demonstrates that PATH

PLAN with the moderately complex obstacle arrangement finds a reasonable path

that a human being can easily expect. Figure 18, however, demonstrates that PATH

PLAN with complicated obstacle arrangement finds a path that a human being can

hardly expect in a reasonable amount of time. Thus, the time spent by PATH

PLAN is considerably less than the time needed by a human being, who possesses

global information, to find a path while avoiding obstacles. PATH PLAN, which

does not use the global information of the terrain, can not find an optimal cost path.

but., the simulation results show that PATH PLAN always finds a reasonable path

on the terrain with complicated obstacle arrangement in relatively short time

period.

C. COMPARISON WITH A SEARCH
*

When the global information of the terrain is available, an A search strategy

can find an optimal cost path to the goal. Though this study was based on local

information rathor than global information, it is desirable to compare the path

found by A search with the path found by PATH PLAN in order to evaluate the

performance of PATH PLAN. For comparison purposes the heuristic power concept

is utilized. The three factors influencing heuristic power are:

1. the cost of the path.

2. the maximum number of OPEN nodes during path search. and

3. tho tiin, required to find the path.

. . .. ,, I ! I (

The OPEN node used here is defined as the leaf node of the search tree[Ref. 20].

PATH PLAN is compared with A search in terms of these three factors. For the

evaluation, three tests, which are shown in Figure 19, 20 and 21, were performed on

a flat area, a moderately sloped area and a highly sloped area of terrain,

respectively. The white colored paths were obtained by A search and the

black-colored paths were obtained by PATH PLAN. Some portions of the

white-colored path are overlapped by the black-colored paths. In order to simplify

the comparison, no explicit obstacles were included and a jeep-type autonomous

vehicle was chosen.

1. COST OF PATH

This heuristic power factor shows how much a path derived by PATH

PLAN is similar to a path derived by A search, a minimum cost path. The

comparison of PATH PLAN cost with A search cost is shown in Table 14. For the

case of Figure 19, the difference between PATH PLAN cost and the A search cost

is less than 1 7 of the A search cost. For the case of Figure 20, the difference is less

than 2 c7(of the A search cost. However, for the case of Figure 21, the difference is

about 167(of the A search cost. Therefore, it is realized that PATH PLAN usually

provides an almost optimized path on flat or moderately sloped terrain and a

reasonable path on highly sloped terrain.

2. MAXIMUM NUMBER OF OPEN NODES

This heuristic power factor shows how efficiently PATH PLAN utilizes

computer resources during its search operation. The maximum numbers of OPEN
*

nodes during a path search are shown in Table 15. The A search strategy uses 99,

124. aid 139 maximum number of OPEN nodes for Figure 19, 20, and 21,

respect ivev. On th other hand. PATH PLAN uses only on-- OPEN node for all the

67

Figure 19. Simulation on a Flat Area for Comparison Between
PATH PLAN and A* Search

6S*

Figure 20. Simulation on a Moderately Sloped Area for Comparison Between
PATH PLAN and A* Search

Figure 2 1. Simulation on a Highly Sloped Area for Comparison Between
PATH PLAN and A* Search

70

Table 14. COMPARISON BETWEEN PATH PLAN AND A* SEARCH SPECT TO COST
WITH RESPECT TO COST

simulation

costI
simulation simulation simulation

in Figure 19 in Figure 20 in Figure 21

PATH PLAN 552.34 738.13 658.66

A* search 549.34 728.06 567.28

difference

(PATH PLAN 3.00 10.07 91.38
- A* search)

difference
0.006 0.014 0.161

A* search

71

Table 15. COMPARISON BETWEEN PATH PLAN AND A* SEARCH WITH
RESPECT TO MAXIMUM NUMBER OF OPEN NODES

simulation
maximum
number of
open nodes simulation simulation simulation

in Figure 19 in Figure 20 in Figure 21

PATH PLAN I I I

A* search 99 129 139

PATH PLAN
0.010 0.008 0.007

A* search

72

three tests because it does not need to use an agenda. Therefore, PATH PLAN is

remarkably efficient in the use of computer memory.

3. TIME TO I-IND PATH

This heuristic power factor shows that how fast PATH PLAN finds a

path. The comparison of the time required to find a path by PATH PLAN with the

time required to find a minimal cost path by the A search is shown in Table 16.

Though it takes the A search 135.72 seconds, 337.61 seconds, and 229.57 seconds,

respectively to find a minimal cost path on Figure 19, 20, and 21, respectively, it

takes PATH PLAN less than 2 seconds for each case. The speed difference between

two methods is huge. The execution speed of PATH PLAN is over one hundred

times as fast as that of the A search.

D. SUMMARY

This chapter discussed the simulation results and the evaluation results of

PATH PLAN. The simulation results show that PATH PLAN finds a reasonable

path from terrain either with or without the explicit obstacles in short time. From

the comparison of PATH PLAN with the A search, it can be said that PATH

PLAN has more heuristic power than A search because PATH PLAN wins two

comparison criteria areas with great margin even though PATH PLAN can not

guarantee finding a optimized cost path. Moreover. A search can not find a path

without a priori information of the terrain. PATH PLAN, however, can find a path

without a priori information.

T'i

Table 16. COMPARISON BETWEEN PATH PLAN AND A* SEARCH WITH
RESPECT TO TIME REQUIRED TO FIND A PATH

simulation
time required ________

to findapath simulation simulation simulation

in Figure 19 in Figure 20 in Figure 21

PATH PLAN 1.10 1.25 1.12

A* search 135.72 337.61 229.57

PATH PLAN
0.008 0.004 0.005

A* search

7-4

VI. SUMMARY AND CONCLUSIONS

A. RESEARCH CONTRIBUTIONS

The PATH PLAN search strategy makes contributions in five areas. The first

contribution is PATH PLAN navigates an autonomous vehicle to a goal while

obtaining the local terrain information from the sensor in a dynamically changing

environment without a priori terrain information. It is suitable for

real-time(on-line) path planning. Thus, PATH PLAN allows an autonomous

vehicle to proceed into a hostile or contaminated environment. The second

contribution is that PATH PLAN navigates a vehicle to the goal in environments

containing obstacles of any shape group. PATH PLAN finds an implicit obstacle by

processing terrain information gathered by a sensor, and then it prevents a vehicle

from moving into the implicit obstacle. Moreover, it guides a vehicle to avoid the

connected explicit obstacles. The third contribution is that PATH PLAN overcomes

local maximum and minimum problem, even though only local information of

terrain is available. The fourth contribution is that PATH PLAN provides a

reasonable path for the vehicle while considering anisotropic three-dimensional

terrain cost. This differs from other path planning algorithms that simply consider

isotropic terrain cost. Th(- la-t contribution is that PATH PLAN search strategy

requires very short time and a minimum amount of computer memory to find a path

becauso it does not use an agenda.

I. RESEARCII EXTENSIONS

It is desirable, to extend this research in four areas. First. PATH PLAN ma:

b,, desicrnd to use, t h pal h-marking value instead of the obstacle marker to avoid

obstacles. Since the path--marking value is used for preventing the vehicle from

visiting positions previously visited, a vehicle may be able to avoid the connected

obstacles without undesirable backtracking. If this works, PATH PLAN may be

simpler than the current version.

Second, PATH PLAN can be designed to distinguish implicit and explicit

obstacles during DETOUR PATH PLAN. The current PATH PLAN treats any

implicit obstacle as explicit obstacle during DETOUR PATH PLAN. Because an

implicit obstacle is considered with respect to the vehicle's approaching direction,

PATH PLAN should not use the obstacle marker on the implicit obstacle; it only

prevents the vehicle from moving to the implicit obstacle.

Third, PATH PLAN can be extended to consider surface characteristics of

terrain. For example, the moving cost on a muddy area is much larger than that on

an asphalt-covered area. Moreover, the slope-limitation will be influenced by the

surface characteristics of terrain.

Finally, PATH PLAN can be improved by using the realistic data of the

autonomous vehicle. The rotational cost, the slope-coefficient and the

slope-limitation were estimated in this research. Using realistic vehicle data in

PATH PLAN will produce an improved path.

76

APPENDIX

;;; -*-Mode: LISP; Syntax: Common-lisp; Package: USER-*-

;; program_id PATH PLAN
;; assigned by professor Kwak
;; written by Ok, Do Kyeong
;; date 1 FEB 1989

;; this program is used for finding a path
;; under following conditions

- three dimensional terrain
the size of a pixel is 12.5 meters 12.5 meters
each pixel has its height in feet e.g, 100 ft
the size of terrain used is 80 * 80 pixels, 1 km I km
each height value is divided by 10

for example, if some pixel hac a 1003 ft height value
then 1003 DIV 10 = 100
so, 100 ft will be used in this program

- a position represented by (X. Y) format
so we can use from (0, 0) to ((- 'mapsize* 1), (- *mapsize* 1))
any positior can be start~position or goal__position

- obstacle area can be given by user

- boundary (out side of valid position)

- one of 8 neighbors and vehicle position
which has the lowest evaluation function value

-CONTROL MODE
.mai
detour

note

- this prograrn is implemented on SIMBOLICS 367.5

- to run program. enter "(ok-search)"

77

- then yoa can read
"Do you want to take the same map as last e.g, y or off :"
if you want same obstacles,goal,start-position as last run

then type "y"
otherwise type "n"

- after displaying "Now, loading data ! please wait a minute"
;1 the map will be displayed on the color monitor located by SYM1

- follow the displaying instructions

- to erase map on the color monitor, type "(kill)"
but if you want same obstaclegoal and start-position,

then don't use this commander

- this program uses two two--dimensional array:
inner-map array 80 * 80, contains the distance

from each position to goal
whenever the robot pass some position.
it will be added by the cost to m.rc 'vehicle

physical-nap array • 80 " 80.
• 'contains each position's height value

obstacle area contains 'obstacle

- tho ares which the robot can see is limited 12.5*(SQRT 2) meters
and it can move 8 directions.
so it is possible to move to one of the nearest

* NNV.V,SXV.S.SE.E and NE

................

l)1F 1 V ARIAB3LES

(I~~k F\'A f III "r ,,-'A'ndow'
I 1 EVA R gnr-,j) -wj, dow-array')

J r)1 FFVA 1I, ,,r(,eti-win ow-wi -it 11)
(1)1 V V t.\| \ r(,o -v indow-hihi

1)1F \ A P grei,'t i -wI Ido -IJA).iI i o?,
(I)l.IV.-\ V gr(. .'-w)nd)w- serf,,v"

1A. FV o --s)(,
I~ ~ ~ (J U Nail Nm N IT-On'lnmra

(DEFVIAR *main-creen*)
(DEFVAR *scren-alu*)
(DEFVAR *start-alu*)
(DEFVAR *goa[.alu*)

DEFAR *black-alu*)
(DEFVAR *pathl-alu*
(DEFVAR *path2_alu*)
(DEFVAR *pathll)l
(DEFVAR *path2l-alu*)
DEFVAR *obstac1e-au*)
(DEF VAR *IevelO-alu*
DEFVAR *levell-alu*
DEFVAR *level2-alu*

(DEFNVAR *level3-alu*
(DEFVAR *level4-alu*
(DEFVAR *leveI5-alu*
(DEFVAR *1eveI6-alu*
(DEF VAR *level7-alu*
DEFVAR *1evel8-alu*
DEFVAR *1evel9-alu*)
SDEFVAR *leve 10-alu)DEF VAR *Ievelll-alu')
DEFVAR iJevel12-~alu*)

(DEFVAR ileve13-alu')
(DEEVAR *Ieve114-alu)
(DEFVAR I1evel15-alu')
(DFFVAR 'leve116-alu*)

(DEFVAR Ieve117-alu')
(DEFVAR *Ievel1S-alu')
(DEFVAR *IeveI9-au*K)
(DF FVAR *Ieve12O-alu')
(DEFVAR *IeveI2l-alu')
(DEEVAR 'ievei22-alu*)

(DEFVAR 'scaled-x')
(DEFVAR 'scaled-y')
(DEFVAR *xc.oord')
(DEEVAR -vcoord'h
(DEFVAR %x--oord')
(DEFVAR 'v-coord',
(DEFVAR -answer')
(DEF\VAR *hifi'
(DEFXAR *orgol-height'j
(DEFVAR *goal')
(DEFVAR *Path-1krW,
(DEFVAR *first-tiw'
(DETVAR ni-rap

DEFVAR *x*)
DEFVAR*y*
DEFVAR *old-x*
DEFVAR *old y*
DEFVAR *old-position*)
DEFVAR *old--od.....sition*)
DEFVAR *od-ieto*
DEFVAR *old-od.-directjon*)
DEFVAR *x-stat*)
DEFVAR *y--tart*)
DEFVAR *mapsize*)
DEFVAR *scale*)
DEFVAR *robot)
DEFVAR *input-tra*)
DEFVAR *start...sition*)
DEFVAR *if-turn-.cst*)
DEFVAR *mode*)
DEFVAR *nearest-distance-bfore*)
DEFVAR *obstacle-rnark*)
DEFVAR *odosal-af
DEFVAR *total-E*~ 0)
DEFXTAR *sope*)

SDEFX'AR *sign')
DEFVAR *smaIlest-E*)

(DEF VAR *D-)
SDEFVAR 'valid')
DEFVAR *Ist-p~)
DEF\'AR *dirrn)

(DEFVAR *temp-~queueo)
(DEFVAR *new--queue*)
(DEFVAR *1ast-evaluation-cosi7)
(DEFVAR *evaluation--cost~)
(DEFVAR *method*)
(DEFVAR *current-position')
(DEFVAR *nwpsto'
(DEFVAR *new-dir-)
(DEFVAR 'time,*)
(DEEV*AR *max--open-~nodes*)

DEFVAR *nd--u-
(FVA R *mnfucio-ah'j

(DEFVAR *smnallest -object')
(DF VAR *close-fist*)
(DEFVAR *passed-befor,*

D)EFINE WIND)OW AND) COLORIS

(DEFFLAVOR my--color-flavor()
(tv:window
tv:graphics-mixin))

(DEFUN make-window
(&rest options &key (superior (color:find-color--6creen :create-p t))

&allow-other-keys)
(apply #'tv:make-window 'my--color-flavor

:blinker-p nil
:borders 2
:save-bits t
:expose-p t
:label nil
:name "Green Window"

:position (list *x--tart* *y-..start*)
;;upper left position of window

:inside-width (* *mapsize* *scale*)
;;multipv num of pixel by size of pixel

:inside-height * *mapsize* *scale*)
:superior superior
options))

(DEFUN make-green-window (
SSETF *green-window* (make-window))
SETF * screen-alu* (SEND color: color-screen

:compute--color-alu
tv:alu--seta 0 00))

(SEND 'green-window* :set--rase-aluf *screen-aluz)
(SEND *green-window* :refresh))

(DEFUN create-green-window()
(SETE 'main--screen' (SEND 'terniinaI-io* :superior))
(makc-green-window)
(SETF 'green-window-pos*

(SEND mgreen-window* :position))
(SElF *green -winrdow-screzi

(SEND 'greeri-windowm :screen))
(in it-ni -colors)
'dorir-j nit -grc-en-wi ndo~k-

(DEFI*N kill (
'k(SE D * r-i-('j(w kl'

(DEFUN init-my-colors()
;; defines colors

(SETF *start-alu* (SEND *grel-.wndow.....creen*
:compute-color-alu color:ahi-x 0.0 1.0 1.0))

(SETF *goaJlu* (SEND *green-window--screen *
SETF:compute--color-aiu color:alu-x 0.0 0.5 1.0)

(ST *pathl..alu* (SEND *gen-indow--creen
:compute-color-alu color:alu-x 0 0 0))*

(SETF *pathl 1-alu* (SEND *gren-wndow--sreen*
:compute--color-alu color:alu-x 1.0 1.0 1.0))

(SETF *path2-alu* (SEND *green-window--screen *
:compute--color-alu color:alu-x 1.0 0 0))*

(SETF *path2 1-alu* (SEND *green-window--creen*

:compute--color-alu color:alu-x 0 0 10))*
(SETF *bsacle-alu* (SEND *green-..window....creen*

:compute--color-alu color:alu-x 1 0 0))*
(SETF *levael0au* (SEND *green-.window-creen*

:compute--color-alu color:alu-x 1.0 10.0))
(SETF lIevel 1-alu* (SEND *green-Window-scren *

:compute--color-alu ooalx1.1010)

(SET F *Ievel2-al u* (SEND *green-wi ndow-screen*
:compute--color-alu

color:alu-x (/ 207 255) (/ 225 255) (/1763 255)))
(SETE *level3-al u* (SEND *green-indow..scren*

:compute-color-al u
color:alu-x (/ 186 255) (/ 2405 255) (/ 142 255)))

(SE TF *level4-al u (SEND *grenwi ndow--screen*
:cornpute-,color-alu

color:alu-x (/ 186 255) (/ 220 255) (/ 150 25-5)))
(SET F lIevel 5-al u* (SEND *gren-wi ndow--screen*

:compute--color-alu
color:alu-x (/ 142 255) (/ 220 255) (/ 970 25)))

(SET F lIeveiG-al uR (SEND *green-winidow-~screen*
:compute-color-alu

color:alu-x (/ 138 255) (/ 2182 255) (/ 97 255)))
(SET F lIevel 7-alu* (SEND *green-wi ndow--screen*

:compu te--color-alu
color:alu-x (/ 220 25-5) (/12 255) (/ 30 255)))

(SET F 'level7-al u* (SEND *green-.wi ndow-screen *
:comput e--color-alu

color:alu-x (/ 230 255) (/1700 255) (/ 50 255)))
(SETF *leve]8-alu* (SEND *gren-window-screeni

:comput e--color-alu
color:alu-x (/ 235 235) (/ 150 255) (/ 60 25.5)))

(SETF 'Ieve19-aluw (SEND *re -no-ce*

((*height* 113)
(box scale scale xcoord ycoord *levelll...alu*))

((= *heght* 114)
(box scale scale xcoord ycoord *levell2.alu*))

((= *heijght* 115)
(box scale scale xcoord ycoord *levell3..alu*))

((= *height* 116)
(box scale scale xcoord ycoord *lIevel14..alu*))

((= *height* 117)
(box scale scale xcoord ycoord *Ievell5-alu*))

((= *height* 118)
(box scale scale xcoord ycoord. *level1&-alu*))

(box scale scale xcoord ycoord *levell7..alu*))
((eij~ght* 120)
(bx scale scale xcoord ycoord *levelIS-alu*))

((> *light* 120)
(box scale scale xcoord ycoord *levell9-alu*))))))

(CLOSE *input-stream*))

(DEFUIN display-height-again (mapsize scale)
;used for drawing the map
;which has same obstacles,goal,start -position as last map
;put height-value into physical-map

1: display map on the color monitor

(DO ((y 0 (+i y 1)))
((= y mapsize))

(DO ((x 0 (+ x 1)))
x mapsize))

(SETQ *height* LAREF *physica-map* xy)
(SETQ *x--coord (x scale))
(SETQ my--coord* (*y scale))

(COND
((EQUAL *height* 1020)

(box scale scale 'x--coord* *vy-coord* *level0-alu*))
((EQUAL *height* 1030)

(box scale scae -x-coord* 'y-coord* *level]-alu*))
((QUAL *height* 1040)

(box scale scale *x--coord* *v--coord* *level2-alu*))
((EQUAL *height* 10.50)

(box scale scale *x--cord* *Yv-coord * Ievel3-alu'))
((EQUAL *height* 1060)

(box scale scale *x-coord* *y--coo(rd* *le%,e4-alu*))
((EQUAL "height' 1070)

(box scale scale x-.coord* v%--coord* 'Ievel.5-alu*))
((EQUAl. *height* 1080)

(box scalp scale *x--coord' *v---coord* *Iv1-au)
((EQUAL *height' 1090)

(box scalo scalo *x-{coord' mvlX~d evelT-alu*)

((EQUAL *height* 1100)
(box scale scale *x-coord* *y-cord* *level8-alu*))

((EQUAL *height* 1110)
(box scale scale *x-coord* *y....{ord* *1eve9lu*))

((EQUAL *height* 1120)
(box scale scale *x--cord* *y--coo~rd* *levelltI....alu*))

((EQUAL *height* 1130)
(box scale scale *x--m<rd* *y....oord* *levelll1-.alu*))

((EQUAL *hei ght* 1140)
(box scale scale *x-,coord* *y-cord* *levell2..alu*))

((EQUAL *hei ght* 1150)
(box scale scale *x--coord* *y...(cord* *levell3-alu*))

((EQUAL *height* 1160)
(box scale scale *x..-cord* *y...<mrd* *levell4-alu*))

((EQUAL *height* 1170)
(box scale scale *x--cwrd* *y--cord* *levell15-..alu*))

((EQUAL *height* 1180)
(box scale scale *x-cord*(*y-cord* *level16-alu*))

((EQUAL *height* 1190)
(box scale scale *x-cod *y-cord* *levell7-alu*))

((EQUAL *height* 1200)
(box scale scale *xcod *y--coord* *level18-alu*~))

((EQUAL *hei ght* 1210)
(box scale scal* x-~coord* *y-cord* *levellg-alu*))

((EQUAL *be* ght* 'ob stacle2

4rawobstc e* x-cord* *y-coord* *scale* *obstacle-alu*))

(DEFFLAVOR nw-mouse ((m-x 0) (m-y 0) (rn-b 0))

:initable-instance-variables)

(DEFMETHOD (read-mouse mv-mouse)

tv:mouse-wait)
(SETE m-x svs:mouse-x)
(SETF rn-v s'vs:rnouse-Nv)
(SETF rn-b t'V:rnouse-last -buttons)
(IF (EQUAL rn-b 4)

(pop--up-my-menu self)
(LIST rn-x rn- in-b)))

(DEEM ETHOD (pop-up -my-menu my-mouse)
if user presed on the right hot ton of mouse.
then this mienu will be dispaly.ed

1

0
SPRINT my-mouse)
LET ((my-menu

(t v:make-window 'tv:momentary-rnenu
':superior * green-window*
::label '(:string "Selection")
'iemn-Iist

'(("Set Goal Loc" :value 42)
("Set Start Loc" :value 43)
("End of Operation" :value 40))

(LIST m-x m-y (SEND my-menu :choose))))

(DEF VAR my-mouse (make--instance 'my-mouse))

(DEFFLAVOR plotter ((vertex-list nil) (pv-x nil) (pv-y nil) (start-p))
(basic-plotter)

:ini table-instance-variables
:readable-instance-variables)

(DEFFLAVOR basic-plotter((start-x 0) (start-y 0)
(end-x 0) (end-y 0))

:initable-instance-variables)

(DEFVAR my-plotter (make-instance 'plotter))

(DEF.METHOD (drawing plotter)
read inputs from mouse
middle botton of mouse -> obstacles
righit botton of mouse -> menu

(MET' ('rn-v (read-mouse mv-mouse))
(x (first mn-v))
(y (second nm-v))
(f (third nm-%)))

(cond ((EQU AL f 40)
end of operat ion

((EQUAL. f 42'
sof goal lo(atiorl

((EQUAL f 43)
;; set start-position location

(draw-start x y) nil)

((AND (EQUAL f 2) (NOT (EQUAL pv-x x)) (NOT (EQUAL pv-y y)))
;; draw obstacles and set obstacle in *physical-map*

(SETF *scaled-x* (' DIV x *scale*) *scale*))
(SETF *scaled-y* (*(DIV y *scale*) *scale*))
draw-obstacle scaled-x* *scaled-y* *scale* *obstacle-alu*)

;;box *scale* *scale* *scaled-x* *scaled-y* *obstacle-alu*)
SETF (AREF *phyi1cal-map* (zl:/ *scaled-x* *scale*)

(zl:/ *scaled-y* *scale*))'obstacle)
nil)

(t nil))))

(DEFUN draw-obstacle (x v scale color)
(box scale scale x ,, rolor))

(DEFUN draw-goal (x y)
;: draw goal position on the given map position

(SETF 'goal* '((,(DIV x *scale*) ,(DIV y *scale*))))
(SETQ 'x' (+ (w (x-position *goal*) *scale*) (DIV *scale* 2)))
(SETQ "y* (+ (* (y-position *goal*) *scale*) (DIV *scale* 2)))
(SEND 'green-window* :draw-filled-in-circle *x* *yX

10 *goal-alu*)
(LET ((lx - *x* 5))

(],Y (+ ""* 7)))

(SEND *'green-window* :draw-string "G"
Ix 1y (+I 1 lx) ly t '(:fix :italic :large)'black-alu) ')

(DEFI'N draw-start (x y)
" draw start position mark on the given map position

(SETF 'start-position* '(((DVx *scale*) ,(DIV y *scale*))))
(SETQ *x' (+ (" (x-position 'start-position*) *scale*)

(DIV *scale* 22))
(SE1 Q 'y (+ ((y-position *start-postion) *scale*)

(DIV *scale* 2))
(SEND 'greez'-windoCw : draw-filled-in--circle *x

10 "start-alu)
(LET ((x (- *x 5))Hlv (y-v 7)))

(S-KNI) *grgeen-window* :draw-string "S"
Ix lv (+ I lx) Iv t '(:fix :italic :larg,)

;PATH-PLANNING

(DEFUN get-map--information (

;; (get-mapsize)
(SETQ *mapsize* 80)

;map size is 80 * 80 pixels

;(get-x-y---start-point)
SSETQ *x-tart* 170)

y.....-start 0)

;; (get-scale)
(SETQ 4scale* 12))
;; each pixel size is 12 *12

(DEFUN build-array ()
;: create inner-map and physical-map

(SETF *inner-map* (MAKE-ARRAY '(,*mapsize* ,*mapsize*)))
;; declare *inner-map' array

(SETF *physical-rnap (IMAKE-ARRAY '(,*mapsize* ,*mapsize*))))
;: declare 'physical-map' array

(DEFUN draw-map ()
create green window
and draw the map on the screen
determine goal,start-position and obstacle-area

(creat e-green-window)
(FORMAT T %Now. data is loading ! please wait a minute")
(display-height 'mapsize' "terraiji.data" *scale*)
(explain-how-to-use-mouse)
(t v:mouse-set -sheet *green-window~)
(do ()

((drawing my-plotter)
'dorie-drawing))

(tv:mouse-set-sheet *main--,,creen'))

(DEFUN get-ready-to-run (
iiil*goal*)

SSETF *totai E* 0)
SETQ *od-ircin 100)
SE TQ *odod-drcin 100)

;, for first step movement, to set turn-cost to 0
(SETQ *nearest-istance--bfore*

(AREF *inner..map*
Sx-position *start...position
y-position *start...position*),

SETF *mode* 'main)
FORMAT T %**select vehicle type. tank-type->1'"
FORMAT T "- *jeep-type -> 2
SETQ *robot* (READ))
FORMAT T::-%*apply turn--cost, yes -> on
FORMAT T" % ** no -> off *)

SETQ *if-turn-cost* (READ)))

(DEFUN ok-search ()
;the highest level function of this program

(select-map)
;; select old map or new map

get -readyv-to-run)path-plan-search)

(SETF *method' 'A)
~print "improved A* search")
tp-At-searcli)

SSETF -method' 'B3)

(pat h-plan-search)

(dribble)
'done)

(DEFUN pat h-plan-search (
(initial -goaP-)
(SET F (AUE -inner-map'

(x-position *start-position')
(v-position *start-position*))

(± (AREF *inner-mapw
(x-position *start..position')
(y-position *start-position*))

12.5))

90

(setf *time* (time
(DO ((q-.element '(0 100 ,*start-..position*)

(expand q--element)))
((EQUAL (LAST (CAR (LAST q.-element))) *goal*)
(setf *path 1ist* qelement))
(determine-mode (LAST (CAR (LAST q-element)))))))

(print-result))

(DEFUN print-result0
print *time*)
setf ok-list *path-4.ist*)
draw-best-path (CAR (LAST *path-4ist*)) *Ievel&.aJu*)
print "DISTANCE FROM START TO GO AL)
prini (distance

Sx-position *start-position*
y-position *start-position*) *goal*))

Print "D= ")
RINi (setf *D*

((CAR *path-1ist*)
(distance (x-position *start-position t)

(v-position *start-position*)

(DEFUN expand (q-element)
(if (EQUAL *mode~ main)

(add-next-position q-element)
(add-next-position 1 q--element)))

(DEFUN add-next-position (q-element)
(SElF *dir' (CAR (CDR q-element))
(SElF *current -position* (LIST (CAR (LAST (CAR (LAST q--clernent))))))
(SETF Thew-position* (best-next-positiou *dir* *current-positionl'))
(path-mark *current-position* *new...position* new-dir-)
(.(± (CAR ql-elemnent)

(local -cost-function *dir* 'current-position* *new-position*)

.(append (CAR (LAST q--element)) *new-position*)))

(DEFUN add-next -positionlI (q-element)
(SETF *dir* (CAR (CDR q-elernent)))
(SETF *cretpoiin (LIST (CAR (LAST (CAR (LAST q--eler-nen1t))))))
(SETE *new-position* (best -next -positionlI *dir* *current-position*))
(pat h-mark *current -position* *new-position* t *ew-dir)j
,(.(+ (CAR q-elernerit)

(local-cost-function *dir* *current -position* *new-position*))
.*new-dire
.(apjg'md ((AlR (MAST o- ferncnt)) *new-position'))

(DEFUN path-mark (p new-p dir)
(SETF (AREF *inner-map* (x-position new-p) (y-position new-p))

(+ (AREF *inner..map* (x-position new-p) (y-fpoition new-p))
(local--cost-function dir p new-p)))

(SETF *total-E* (+ *total..E* (local-cost-function dir p new-p))))

(DEFU N best-next-position (old-direction p)
;return next p
;whose cost is the mmi of 8 candicate PS' evaluation p cost

SE TF *smallest--object* (/ (smallest-object p old-direction) 1))
(CND
((EQUAL

((evaluation-function old-direction p (w-position p)) 1)
smallest-bject

~SETF *new-dir* 6

((EQUAL
((evaluation-function old-direction p (n-position p)) 1)
*smallest-object ')

SETF *'new-dir* 0)
nposition p))

((EQUAL
((evaluation-function old-direction p (s-position p)) 1)
smallest -object~)

(SETF 'new-dir' 4)
(s-position p))

((EQUAL
(U (evaluation-function old-direction p (e-position p)) 1)

'smal lest--object -)
(SETF *new--dir' 2)
(e-position p))

((EQUAL,
((evaluation-function old-direction p (nw-position p)) 1)

~smallest -object *)
(SETE *new-dir' 7)
(nw-position p))

((EQ UAL1
((evaluation-function old-direction p (ne--position p)) 1)
*smal lest -object'~)

(SElF 'new-dir* 1)
(ne-position p))

((EQU1AL
((eval uat ioin-funct ion old-direction p (sw-position p)) 1)
*smallest -object ')

(SETIF 'new-dir' 5)
(SW-Posithi 1))i

((EQUAL
((evaluation-function old-direction p (se-position p)) 1)
*smnallest --ohjoct,

92)

SETF *new-Iir* 3)
se-position p))))

(DEFUN best-next-positionl told--direction p)
this is applided if *mode is 'detour
to select next p

(COND
((EQUAL (/ (evaluation-functioni old--direction D (w-position p)) 1)

((smallest--eval p old-direction) 1))
(SETO *newdir* 6)
~get-obs-rnark (w--position p))

((EQUAL (/ (aluation-function1 old-direction p (n-position p)) 1)
((smalest--eval p old-direction) 1))

SSETQ *n%-dr 0)
get-ohs-mark (n-position p))

((EQUAL (/ (evaluation-functioni old-direction p (s-position p)) 1)
(U (small est-eval p old-direction) 1))

SS ETQ 'new-dir* 4)
get-obs-mark (s-position p))

((EQUAL (/ (evaluation-function' old-direction p (e-position p)) 1)
((smallest-eval p old-direction) 1))

(SETQ *new-dir* 2)

get-obs-mark (e-position p))

((EQUAL (/ (evaluation-functioni old-direction p (nw-position p)) 1)
((smallest-eval p old-direction) 1))

(SETQ *new--dir' 7)
(get--ohs-mark (nw-position p))
(nw-position p))

((EQUAL (/ (evaluation-functioni old-direction p (nc-posit ion p)) 1)
((smallest-eval p old-direction) 1))

(SETQ Thew-dir* 1)
(get-obs-mark (ne-position p))
(ne-position p))

((EQ'AL, (/ (evaluation-functioni old-direction p (sw-position p)) 11
((smnaflest-eval p old-direction) 1)

(SETQ 'new-dir* 5)
(get-obs-rnark (sw-position p))

(sw"-posi tion p))
((EQ'Al, (/ (evaluation-functioni old-direction p (se--position p)) I

((sinalke-st-eval p old-direction) 1)
(SETQ 'new-dir* 3)
(jnvt--obs-mnark (se,-position p))
(Se-position P)Jn)

(DEFUN smallest-object (p old-direction)
;; get the minimum the cost of
;; 4 candicate position evaluation funtion value

(MIN (evaluation-function old-direction p (w--position p))
evaluation-function old-direction p e-position p))
evaluation-function old-direction p n-position p))
evaluation-function old-direction p s-position p))
evaluation-function old-direction p nw-position p))
evaluation-function old-direction p ne-position p)
evaluation-function old-direction p sw-position p))
evaluation-function old-direction p se-position p))))

(DEFUN smallest-eval (p old-direction)

(MIN (evaluation-functionl old-direction p (w-position p))
evaluation-functionI old-direction p e--position P)
evaluation-function1 old-direction p n-position p))evaluation-functionl old-direction p s-position p))
evaluation-functioni old-direction p nw-position p))
evaluation-functionl old-direction p ne-position p))
evaluation-functionl old-direction p sw-position p))
evaluation-function 1 old-direction p se-position p))))

(DEFUN evaluation-function (old-direction p new-p)
(+ (local--cost-function old-direction p new-p)

(estimation-function old-direction p new-p)))

(DEFUN estimation-function (dir p new-p)
: for main MODE
(COND ((EQUAL (watch p new-p) 'obstacle) 100000)

(T (+ (get--exp--turn dir
(x-position new-p) (y-position new-p)
(x-position *goal) (y-position *goalS))

(AREF oinner-map* t

(x-position new-p) (y-position new-p))))))

(DEFUN evaluation-functionil (dir p new-p)
(COND ((OR (NOT (next-by-obstacle new-p))(NOT (next-to-new--obs-mark new-p))

(EQUAL new-p p)) 10000)

(T (rotational-cost dir p new-p))))

(DEFUN local--cost-function (direction p new-p)
(+ (tran'itional--cost p new-p)

(rot .tioial--cost direction p new-p)))

941

(DEFUN imp-A *--search0
;for improved A* search
(initial *goal*)
(SETF *dlose-list* 'nil)
SETF *a-oennoe* 0)
setq *time* (time

Do (quue(start-list) (next--step queue)))
((EQUAL (arrived oal ueue) 'T)

(SETF *path~list* (CAuR (LAST queue))))
(setf queue (remove--node queue)))))

Sprint *time*)(PRIN1 "MAX-OPEN-N ODES 1)
PRINT *m-pen-lode*)
draw-best-path (cadddr *path-list*) *level}...alu*))

(DEFUN A*-search (
;for A* search

(iiia goal*)
(SETF *close-list* 'nil)
(SE TF *inax-open-nodes 0)
Ssetq *time* (time

D((queue (start-list) (next-step queue)))
((EQUAL (arrived-goal queue) 'T)

(SETF *path-list* (CAR (LAST queue))))
(setf queue (remove-nodel queue)))))

Sprint *time*)(PRIN1 "MAX-OPEN-NODES"I)
PRINT *max-open-nodes*)
(draw-best-path (CADDDR *path-list *) * levelO-alu *))

(DEFUN start-list (
(LIST '(

,(distance (x-posit ion *start-position*)
(y-position *start-position*) *goal*)

100
,(distance (x-position *start-position*)

(y-position *start -position*) *goal*)
,*start-..position*))

(DEFUN num-of-elem (queue)
(DO ((temp queue (CDR temp))

(sum 0 (1+ sum)))
((atom temp) sum)))

9 5

(DEFUN passed-before (p path-list)
SSETF *passed...efore* 'nil)
DO ((temp path-list (CDR temnp)))

(OR (EQUAL temp 'nil *Pased--efore*)
IF (EQUAL (CAR p) (MA temp)) (SETF *passed--before* 'T)))

passed-efore)

(DEFUN arrived-goal (queue)

sort queue #5> -key #'car)
EUAL (LAST .(CAR (LAST (CAR (LAST queue))))) *goal*))

(DEFUN draw--step (old-p new-p color)
;draw lines path
;to find the middle point of pixel, (DIV *scale* 2) is required

(SETQ *od...x* (+ (~*(car old-p) *scale*) (div *scale* 2)))
SETQ *old..y* (+ ((car (cdr old-p)) *scale*)(div *scale* 2)))
SETQ * x"'(* (car new-p) *scale*) (div *cale* 2)))
SETQ *y* (+(car (cdr new-p)) *scale*)? (div *scale* 2))?
SEND *green-window* : draw-line *dx* *old-y* ** *y color))

(DEFUN draw-best-path (path color)
(DO ((p1 path (CDR pl)

(EQUAL (CDR p1)(nil1))
draw-step (car p1) (car (cdr p1)) color)))

(DEFUN remove--node (queue)
for improved A* search

Ssetf *temp-iqueue* '())
setf *smallest-E* (car (car (last queue))))
setf *sign* 'nil)

V D ((temp queue (CDR temp)))
S(OR (null temp) (EQUAL *sign* 'T)))
CAND ((<= (- (car (CAR temp)) *smallest-E*) *D*)

(setf *temp-queue* temp)
(setf *sign* 'T))))

(setf *new-queue* '0))
(DO ((tempi *temp-~queue* (CDR tempi)))

8F(EQUAL (good-node (CDR tempi) (car temnpi)) 'T)
(setf *nw-quu*

(append *new-.queue* (list (car tempi)))
(SET F * node-num* (num-of-elem *new...queue*))
(IF (> *node-num* *max-open-nodes*)

(SETF * max-open -nodes* *node-num*))
*new-~queuew)

(DEFUN remove-nodel (queue)
Ssetf *smallest-E* (car (car (last queue))))
setf *sign* 'nil)
setf *new...queue* I)

IDO ((tempi queue (C R tempi)))

~IF (EQU)~ (good-node (CDR tempi) (car tempi)) 'T)
(setf *new...queue*

(append *new...queue* (list (car ternpil)
(EF *node-nurn* (num-of-elem *new-quee)
(I >*node-num* *mx-pn-oe*

*(SETF *max-pen...4oe* *node-um*))
new-queue*)

(DEFUN h (queue)
(DO ((temp queue (CDR temnp)))

S(null temnp))
print (car (car temp)))
princ" .
princ (last (car (last (car temp)))))))

(DEFUN draw-ok (color)
(DO ((temnp *new-queue* (CDR temnp)))

(null temnp))
draw-point (x-position (last (car (last (car ternp))

(y-position (last (car (last (car temp)))))
color))

(SEND *genwidw draw-filled-in--circle
((x-position

(last(car(last (car (last *new..queue*))))))
scale)

(last(car(last (car (last *new-ueue*))))))
* scale*)

7 *obstacle-~alu*))

(DEFUN draw-point (x y color)
;: draw goal position mark on the given mnap position

(SEND *green-windoww
:draw-filled-in--circle (* x *scale*) (* y *scale*)

3 color))

(DEFUN good-node (queue q--elemnent)
(setf *valid* 'T)
(setf *lastzip* (las;t (car (last q-elemnent))))
'DO ((temp queue (CDR temnp)))

(MR~ (null ternp) (EQUAL *valid* 'nil)))

97

(cond ((EQUAL *last-p* (last (car (last (car temp)))))
(setf *valid* 'nil))))*valid *)

(DEFUN next-step (queue)
(SETF *rin-function-path* (CAR (LAST queue)))
SETF *temp-queue* (DELETE *rin--4unction-path* queue))
SETF *dose-list*

(APPEND (LAST (CAR (LAST *rin-function--path*))) *close4ist*))
(go-neighbors *min-function-path*))

(DEFUN select-smaller (x y)
(IF (> x y) y x))

(DEFUN get-exp-turn (dir x y x1 yl)
(COND ((< x xl)

(COND ((<y yl)
(COND ((< (- x x) (-yl y))

(select-smaller (get-turn dir 0) (get-turn dir 1)))
((> (-xi x)(-yl y))
(select-smaller (get-turn dir 1) (get-turn dir 2)))
(T (get-turn dir 1))))((V vl)(

CON D ((< (-x x) (-y y))
(select-smaller (get-turn dir 3) (get-turn dir 4)))
((> (-x x) (-y y))
(select-smaller (get-turn dir 2) (get-turn dir 3)))
(T (get-turn dir 3))))

(T (get-turn dir 2))))
((>x xl)

(COND ((< y yl)
(COND ((< (- x xl) (- yl y))

(select-smaller (get-turn dir 7) (get-turn dir 0)))
((> (-x xi) (-yl y))
(select-smaller (get-turn dir 6) (get-turn dir 7)))

(T (get-turn dir 7))))

COND ((-x xl) (-y yl))
(select-smaller (get-turn dir 4) (get-turn dir 5)))

((> (-x xl) (- y yi))
(select-smaller (get-turn dir 5) (get-turn dir 6)))

(T (get-turn dir 5))))
(T (get-turn dir 6))))

(TO)))

9S

(DEFUN go-neighbors (q-elernent)
(SETF *lastp * (last (car (last q-element))))
SETF *dir* (CADR q--element)
SETF *last-valuation-c.ost* (C DDR q--element))
IF (equal *last-p* *goal*)

SSE TF *temp-queue* (append *temp-..queue* (list q-element)))
UNLESS *(passed-before (n-position *last-p*) *close-list*)

(SETF *temp-queue* (append *tempqueue*
(LIST (LIST (+ (CAR q-element)

- *lastevaluation-ct*)SSETF *evaluationfmt*
(estimation-function *dir* *last-?

(n-position *last...p))
(local-cost-function (car (cdr q--elernent))

last-.p (n-position *last-..p*)))
o *evaluation-cost*

(append (car (last q-element)) (n-position *last-p*)))))))
(UNLESS (passed-before (ne-position *last-.p* *coe.ist*)

SS ETF *temp-queue* (append *temp-queue*
LIST (LIST (+ (CAR q--element)

- *ast-valuation-ost *)
SETF *evaluation-ost*

(estimation-function *dir* *last-p *
(ne-position *last-p*)))

(local-cost-function (car (cdr q--element))
last-p (ne-position *last..p*)))

1 *evaluationowst*
(append (car (last q-element)) (ne-position *last-..p*)))2)))

(UNLESS (passed-before (e-position *last-p*) *close-list)
SS ETF 'temp-queue* (append *temp-.queue*
LIST (LIST (+ (CAR q--element)

S-*last -evaluation-cost *)
SETF *evaluation-ost*

(estimation-function *dir* *last-p*
(e-position *last-p*)))

(local-cost -function (car (cdr q--element))
last-p (e-position *last-p*)))

2 *evaluation--cost*
(append (car (last q--element)) (e-position *last-p*)))))))

(UN LESS (passed-before (se-position *last-p*2) *cIose-list ~
SSETF *temp-queue* (append *temp-queue
LIST (LIST (+i (CAR q--element)

l ast -evaluation-.cost*)
SETF *evaluation--cost*

(estimation-function *dir* *13$-t-p
(se-position *last-p*)))

(local -cost-functi on (car (cdr q--element))
las;t-.p (se-position *last-p*)))

3 *evaluation--cost'
(append (car (last q--element)) (se-position *last...p*)))))))

99

(UNLESS (passed-before (8-position *last-..p*) *close-ist*)
(SETF *temp-queue* (append *tegkp..queue*
(LIST (LIST (+ (CAR q--elexnent)

-*last-valuation.ost*)

W STF *evaluationcost*
(estimation-function *dir* *last-.p *

(s-_position *last-pj*))
(local-cost-function (car (cdr qeeet

4 *evaluaton-ost*
(append (car (last q-element)) (s--position *last-..p*)))))))

(UNLESS (passed- before (sw-position *last-p*) *close-ijst*)
(SETF *temp..queue* (append *tepqueue*
(LIST (LIST (+ (CAR q-element)

S-*last...evaluation...cost*)

SETF *evaluation,ot*
(estimation-function *dir* *lastp *

(sw-position *last-p* 'l
(local-cost-function (car (cdr q-element W
5 *evaluation.ost*

(append (car (last q-.element)) (sw-position *last...p*)))))))
(UNLESS (passed-before (w-position *last...j*) *close..ljst*)

SS ETF * temp-queue* (append * temp-.queue*
(LIST (LIST (+ (CAR q-element i

- *ast-valuation-ost*)
SSETF *evajuationost*

(estimation-function *dir* *last-p *
(w-position *last..p*))

(local--cost-function (car (cdr q-element)

6 *evaluationost'
(append (car (last q-element)) (w-position *last-p*)))))))

(UNLESS (passed-before (nw-position *last-p*) *c~o5ist 4j)

S ETF *temp-queue* (append *temp...queue*
LIST (LIST (+ (CAR q-element)

*l- ast -evaluation-.cost *)
SETF *evaluation-ost*

(estimation-function *dir*c *las;t-p
(nw-position *las;t..p*)))

(local-cost-function (car (cdr q-element))
last-p (nw-position *Iast-p*)))

7 *evaluation-cost*
(append (car (last q-eclement)) (nw-position *last-p*))))))))

Ntemp-~queue*

(DEFUN numn-f-steps (path-list)
(CON D ((EQUAL (CDR path-list) nil) 0)

(T (+ I (num-of--steps (CDR path-list))))))

100

(DEFUN X-Position (position)
;; get X from a specific position

(FIRST (FIRST position)))

(DEFUN Y-Position (position)
;; get Y from a specific position

(FIRST (CDAR position)))

(DEFUN initial (goal)
;assign distance from *goal* to each position
;to *inner-.map* array

(DO (X0(+ X 1))) ;from 0 to mapsize-1
((=X *mapsize*))
;call function 'sub--initial' mapsize times

(sub-initial X goal)))

(DEFUN sub-initial (X goal)
;subfunct ion of initial
;assign distance from *goal* to each position
;to *inner-map* array

(DO ((Y 0 (+ Y 1))) ;from 0 to mapsize-1
((= Y *mapsize*))

(assign-d4istance X Y goal)))

(DEFUN sensor (P)
(AREF *physical-map* (x-position p) (y-position p)))

(DEFUN watch (p new-p)
;: this checks implicit and explicit obstacle

(COND ((EQUAL (slope--coefficient pnew-p) 10000)
(SETF (AREF *phvsicalmap (x-position new-p)

y-position new-p))
'obstacle))

(T (AREF *physical-map* (x-position new-p)
(v-position new-p))))j

(DEFFN g#'!-height-distance (p new-p)
(-(senisor nc'w-p) (senisor p)) 2))

101

(DEFUN div (dividend divisor)
(truncate (/ dividend divisor)))

(DEFUN get-eslope (p new-p)
;get slope between position and new-position

slope-rate(ft/m)
;duff height(ft) 12.5 m 12.5*(SQRT 2) m

15 1.2 0.85
10 0.8 0.57
5 0.4 0.28
0 0.0 0.0
-5 -0.4 -0.28

-10 -0.8 -0.57
-15 -1.2 -0.85

;you can see return value of each case as follows

(IF (EQUAL p new-p) 0
(JF (EQUAL (sensor p) 'obstacle) 0

((get-height-distance p new-p)
(distance (x-position p) (y-position p) new-p)))))

(DEFUN slope-coefficient (p new-p)
(IF (EQUAL (sensor new-p) 'obstacle) 10000

SSETF *s!ope* (get-slope p new-p))
CIN ((EQUAL *robot* 2) ;jeep-type
(C OND (> *slope* 0.6) 10000)

> *lopese -0.6) 10000)

>*slope: 0.3 1.6)
> *loe*0.2 1.3'
>=sloe*01 1.0)

" sope: -0.3) 0.8)
" sope* --0.5) .

11 sope* -0.63 1.53)
((EQUAL *robot* 1) ;tank-type
(COND (> *slope* 0.9) 10000)

slpe -0.9) 10000)
(>*lope* 0.5 1.9

(e:~O~ 0.3 1.6
(> *lope* 0.2 1.3)
~ >= *Slope* 0 1.0)

" ope -.) .
(>*Slope* --0.6) 1.5)
(>*slope* --0.9) 2.01)))))

102

(DEFUN assign-distance (X Y position)
;assign distance from the riven position
;to position (X Y) to the inner-rnap* array

(SETF (AREF *inner....ip* X Y) (distance X Y position)))

a (DEFUN distance (X Y position)
;; get distance from the given position to position (X Y)

(SQRT (+ (* (dis-X-from-given--position X position)
(dis-X-from-given--position X position))

((dis-Y-from-given-position Y position)
(dis-Y-from-Vgven-position Y position)))))

(DEFUN dis-X-from-given--position (X position)
;get X-distance from the given position
;X--distance = ABS(position's X-value - X)

(~(ABS (- (X-position position) X)) 12.5))

(DE FUN dis-Y-from-given-position (Y position)
;get Y--distance from the given position
;Y-distance = ABS(position's Y-value - Y)

((ABS (- (Y-position position) Y)) 12.5))

(DEFUN e-position (position)
;get the new position that is located on the
;east-side of given position

(COND ((/= (x-position position) (- *mapsize* 1))
(SETQ position '((,(+ (X-position position) 1)

,(Y-position position)))))
(T (SETQ position position))))

(DEFU.N w-position (position)
;get the new position that is located on tnie
;west--side of given position

(COND ((/= (x-position position) 0)
(SETQ position I((,(- (X-position position) 1)

,(Y-position position)))))
(T (SETQ position position))))

103

(DEFUN n-position (position)
;; get the new position that is located on the
;; north-side of given position

(COND ((/= (y-position position) (- *mapsize* 1))
(SETQ position '((,(X-position position)

,(+ (Y-position position) 1)))))
(T (SETQ position position))))

(DEFUN s-position (position)
;; get the new position that is connecting directly and located on the
;; south-side of given position

(COND ((/= (y-position position) 0)
(SETQ position '((,(X--position position)

,(- (Y-position position) 1)))))
(T (SETQ position position))))

(DEFUN ne-position (position)
;; get the new position that is located on the
;; northeast-side of given posit-on

(COND ((AND (/= (x-position position) (- *mapsize* 1))
(/= (y-position position) (- *mapsize* 1)))
(SETQ position '((,(+ (X-position position) 1)

,(+ (Y-position position) 1)))))
(T (SETQ position position))))

(DEFUN nw-position (position)
;; get the new position that is located on the

northwest-side of given position

(COND ((AND (/= (x-position position) 0)
(/= (y-position position) (- *mapsize* 1)))

(SETQ position I((,(- (X-position position) 1)
,(+ (Y-position position) 1)))))

(T (SETQ position position))))

(DEFUN se-position (position)
;; get the new position that is located on the
;: southeast-side of given position

(COND ((AND (/= (x-position position) (- *mapsize* 1))
(/= (y-position position) 0))

(SETQ position '((,(+ (X-position position) 1)
.(- (Y-position position) 1)))))

(T (SETQ position position))))

104

(DEFUN sw-position (position)
;; get the new position that is located on the
;; southwest--side of given position

(COND ((AND (/= (x-position position) 0)
(/= (y-position position) 0))(SETQ position ,(X-position position) 1)post(N IY--position position) 1)))))

(T (SETQ position position))))

(DEFUN transitional-cost (position new-position)
;; returns the cost to move from position to new-position
;;cost =
;; slope--coefficient * distance between position and new-position

(* (slope--coefficient position new-position)
(distance (x-position new-position)

(y-position new-position) position)))

(DEFUN get-direction (p new-p)
(COND
((EQUAL (x-position p) (x-position new-p))

(COND ((EQUAL (y-position p) (y-position new-p)) 100)
((EQUAL (+ (y-position p) 1) (y-position new-p)) 0)

EQUAL (- (y-position p) 1) (y-position new-p)) 4)))
((EQUAL (y-position p) (y-position new-p))(COND ((EQUAL (+ (x-position p) 1) (x-position new-p)) 2)((EQUAL (- (x-position p) 1) (x-position new-p)) 6)))
((EQUAL (+ (x-position p) 1) (x-position new-p))

(COND ((EQUAL (+ (y-position p) 1) (y-position new-p)) 1)
((EQAL (- (y-position p) 1) (y-position new-p)) 3))

((EQUAL (- (x-position p) 1) (x-position new-p))
(COND ((EQUAL (+ (y-position p) 1) (y-position new-p)) 7)

((EQUAL (- (y-position p) 1) (y-position new-p)) 5)))))

(DEFU.N rotational-cost (old-direction p new-p)
;: determine direction from p to new-p
;: return turn cost to eval position function
(get-turn old-direction (get-direction p new-p)))

(DEFUN get-turn (old-direction new-direction)
return turning-cost as follow

105

;; turning-angle cost(ft)
jeep-type tank-type

0 0 0
45 1 2
90 3 5
135 7 10
180 10 13

(COND OR (EQUAL *if-turn--cmt* 'on) (EQUAL *mode* 'detour))

((EQUAL *robot* 2)
(COND

ONABS - new-direction old-direction 0 0)
ABS - new-direction old-direction I 1)
ABS -new-direction old-direction 2 3)
ABS - new-direction old-direction 3 7)
ABS - new-direction old-direction 10)
ABS - new-direction old-direction 7)
ABS - new-direction old-direction)6 3)
ABS - new-direction old-direction)7 1)

(> ABS - new-direction old-direction 7 0))
;; for the first movement

((EQUAL *robot* 1)
(COND

(ABS new-direction old-direction 0
(ABS new-direction old-direction1 2)
ABS new-direction old-direction 2 5)
ABS new-direction old-direction 3 13
ABS new-direction old-direction 4 13)ABS new-direction old-direction 5 10

((ABS (new-direction old-direction 65)
ABS new-direction old-direction 7)

((>(ABS (-new-direction old-direction 7 0)))
;; for the first movement

(T 0)))

(DE FUN next -by-obstacle (position)
if robot is next by obstacle and robot is not on obstacle,

;; then return true

(AND (OR (EQUAL (watch position (w-position position)) 'obstacle)
EQUAL (watch position (e-position position)) 'obstacle)
EQUAL (watch position (n-position position)) 'obstacle)
EQUAL (watch position (s-position position)) 'obstacle))

(NOT (EQUAL (watch position position) 'obstacle))))

106

(DEFUN went-backcward (p~osition ol-psiin
;if new-position is far from goal than lpoions
;then return true

(<(distance (x-position position) (y-position position) *goal*)
(ditance (x-position old-position)

(y-position old-position) *goal*)))

(DEFUN determine-mode (position)

(COND
((AND (next-by-obstacle positionj

(<= *nwaest-,ffstance-bfore
(distance (x--position position)

(y-osiionposition) *joal*)))
(IF (OT (QAL *mode* detour))

(get-first-old--obstacle-position position)))
(SETQ *mode* 'detour) t)

(T (SETQ *mnode* 'main)
(SETQ 2nearest.-distance-before*

(distance (x-position position)
(y-position position) *goal*))

nil)))

(DEFU N next -to-obs-markl (position)
;if position is an obstacle and is next by old-obstacle-posit ion,
;then return true

(COND
((EQUAL (sensor position) 'obstacle)

(COND ((EQUAL position (w-position *obstacle-mark*)) t)
((EQUAL position (e-position *obstacle-mark*)) t)

SEQUAL position (n-position *obstacle-mak*)) t)
EQUAL position is-position *obstacle-.mark*)) t)

(EQUAL position obstacle-~mark*) t)
ITnil)))

IT nil)))

(DEFUN next-to-obs-mark2 (position)

(COND ((next -to-obs-mark I position) t)
((OR (next-to--ohs-mark I (w-position position))

Snext -t o-obs-mark I (e-position position))
next -to-obs-markl (n-position position))

(next -t o-obs-mark I (s-position position))) t)
(T nil)))

107

(DEFUN next-to-obs--mark3 (position)
;; if position is an obstacle
;; and next by obstacle which is next by old obstacle,
;; then return true

(COND ((EQUAL (sensor position) 'obstacle)
(COND((next-to-obs--markl position) t)

((AND (EQUAL (watch position (w--position position))
'obstacle)

(next-to--obs-mark2 (w--position position))) t)
((AND (EQUAL (watch position (e-position position))

'obstacle)
(next-to-obs-mark2 (e-position position))) t)

((AND (EQUAL (watch position (n-position position))
'obstacle)

(next-to-obs-mark2 (n--position position))) t)
((AND (EQUAL (watch position (s--position position))

'obstacle)
(next-to-obs-mark2 (s-position position))) t)

(T nil)))
(T nil)))

(DEFUN next-to--obs-mark4 (p)
;; if position is an obstacle
;; and next by obstacle which is next by old obstacle,
;; then return true

(COND ((EQUAL (sensor p) 'obstacle)
(COND ((next-to-obs-markl p) t)

((AND (EQUAL (watch p (w-position p 'obstacle)
(next-to-obs-mark3 (w-position p))) t)

((AND (EQUAL (watch p (e-position p 'obstacle)
(next-to-obs-mark3 (e-position p)0 t)

((AND (EQUAL (watch p (n--position p)) 'obstacle)
(next-to-obs-mark3 (n-position p))) t)

((AND (EQUAL (watch p (s-position p)) 'obstacle)
(next-to--obs-mark3 (s-position p))) t)

(T nil)))
(T nil)))

(DEFUN next-to-new-obs-mark (position)
;; if position is next by obstacle which is next by obstacle
;; which is next by old obstacle,
;; then return true
(COND ((AND (EQUAL (watch position (w-position position))

'obstacle)
(next-to-obs-mark4 (w-position position))) t)

((AND (EQUAL (watch position (e-position position))
'obstacle)

(next-to-obs-mark4 (e-position position))) t)

10S

((AND (EQUAL (watch position (ni-poition position))
'obstacle)

(next-to-obs-mark4 (n-position position))) t)
((AND (EQUAL (watch position (s-position position))

'obstacle)
(next-to-obs-nark4 (s--position position))) t)

(TnMi)

(DEFUN get-obs-mark (position)
;; from present position, get best old(longest) obstacle

(COND
((EQUAL (/ (eval--dis-from-obs-mark (e-position position)) 1)

((max-dis-from-obs-mark position) 1)
SSETQ *oldbstacle..nrk* *obst~...{mark*)
SETQ *obstacle-mark* (e-position position)))

((EQUAL (/ (eval-dis-from-obs-mark (w-position position)) 1)((max-dis-from-obs-mark position) 1)
SSE TQ *old-obstacle.mark* *obstacl mark
SETQ *obstacle-mark* (w-position position))

((EQUAL (/ (eval-dis-from-obs-mnark (n-position position)) 1)
((max-d is-from-obs-mark position) 1))

SSETO *oldbstacle-mark* *obstacle-maxk*)
SETQ *obstacle-mark* (n-position position)))

((EQUAL (/ (eval-dis-from-obs-mark (s-position position)) 1)
(f(max-dis-from-obs-mark position) 1))

SETQ *old<obstacle-mark* *obstacle-mark*)
(STQ "obstacle-mark* (s-position position)))))

(DEFUN max-dis-from-obs-mark (position)
;; get max distance from old obstacle to possible new old obstacle
(MAX (eval-dis-from-obs-mark (e-position position))

(eval-dis-from-obs-mark (w-position position))
Seval-dis-frorn-obs-rnark n-position position))

eva-disfromobs-ark s-position position))))

(DE F UN eval-dis-from-obs-mark (p)
:get distance from old obstacle to position

position case return

impossible to connect
to old obstacle 0

not obstacle 0
old obstacle 5
else distance from

old obstacle to position

109

(COND ((NOT (next-to-obs-mark4 p)) 0)
((NOT (EQUAL (sensor p) 'obstace)) 0)
(EQUAL p *obstale-mprk*) 5)
(T
(distance (x-position p) (3'-position p) *obqtacle-mark*))))

(DEFUN get-first-old-obstacle-position (position)
;when mode is chan~ed to 'obstacle-path,
;the obsatcle which is next position and nearest to goal

(COND
((EQAL evalbes-disto-oalposition (e-position position)) 1)

(E U [tva-s-dis-to-goalion 1))
(SETQ *obstacle-mark* (e-position position)))

((EQUAL (I(eval-best--dis-to-oal position (w-position position)) 1)
(U (et-di(s-to-oal position) 1))

(SETQ *obstacle-mark* (w--posi tion position)))
((EQUAL (/ (eval-best--dis-to-goal position (n--position position)) 1)

(U (best-dis-to--goal position) 1))
i(SETQ *obstacle-mark* (n-position position)))

((EQUAL (/ (eval-best-dis-to-oal position (s-position position)) 1)
((best-dis-to--goal position) 1))
(SETQ *obstacle-mark* (s-position position)))))

(DEFUN best-dis-to-goal (position)
;; get min distance from four neighbors of position to goal

(MIN (eval-best-dis-to-goal position (e-position position))
Seval-best--dis-to-goal position (w-position position))
eval-best--dis-to-goal position (n-position position))
eval-best--dis-to--oal position (s-position position))))

(DEFUN eval -best -di s-to-goal (p new-p)
;return distance from position to goal
;but position is not an obstacle, then return 10000

(COND ((NOT (EQUAL (watch p new-p) 'obstacle)) 10000)
(T (distance (x-position new-p) (y-position new-p) *goal*))))

(DEFUN get-mapsize ()
(FORMAT T "-%Enter a rnapsize e.g, 80 and RETURN-key:
(SETQ *mapsize* (READ)))

(DEFUN get-x-v-start-point ()
SFORMAT T "-%Enter a left upper point of window e.g, 00:"
SETQ *xtart: (READ)SETQ *y-startS (RAD))

110

(DEFUN get--scale (
SFORMAT T %Enter a virtual pixel size e.g, 5
SETQ *scale* (READ)))

(DEFUN select-map 0)
;determines whether the user use the old map or not

SFORMAT T "-%Do you want to take the same map as last e.g, yor n:
SETQ *answer* (READ))
COND ((EQUAL *answer* 'y)

create-green-window)
initial *goal*)
display-height-afain *mapsize* *scae*)
SETQ *old...posit ions (LAST *path-4ist*))
draw-goal (* (x-position *goal*) *scae*)

((y-*position *goal*) *scale*))
(draw-start ((x-position *start-position*) *scale*)

(* (y-position *staxt..posjtion*) *scale*)))

(T (get-ready-to-run))))

(DE FUN explain-how-to-use-mouse

FORMAT T "s-(c 1)
FORMAT T "% to put obstacles,")
FORMAT T -% I1. move mouse on the place where obstacle will be")
FORMAT T::-9(. 2. press the middle button of mouse")
FORMAT T "% to select goal and start-position")
FORMAT T "-'V 3. press the right bottun of mouse")
SFORMAT T -%' 4. move mouse to SET GOAL LOC to set goal or")
FORMAT T "~ SET START LOC to set start-position")
FORMAT T "K 5. press the right button of mouse"))

LIST OF REFERENCES

1. Hart, P., Nilsson, N. J., and Raphael, B., "A Formal Basis for The
Heuristic determination of Minimum Cost Paths," IEEE Trans. Sys. Sci.
yber, v. SSC-4(2), pp. 100-107, 1968.

2. Nilsson, N. J., "A Mobile Automation: An Application of Artificial
Intelligence Techniques," Proc. 1st Int. Joint Conf AI, pp. 509--520,
May 1969.

3. Lozano-Perez, T., and Wesley, M. A., "An Algorithm for Planning
Collision-free Paths among Polyhedral Obstacles," Comm. v.
ACM-22(10), pp. 560-570, 1979.

4. Lozano-Perez, T., "Spatial Planning: A Configuration Space Approach,"
IEEE Trans. Computers, v. C-32(2), pp. 108-119, 1983.

5. Brooks, R. A., "Solving The Find-path Problem by Good Representation of
Free Space," IEEE Trans. Sys. Man Cyber., v. SMC-13, pp. 190-197,
1983.

6. Moravec, H. P., "Visual Mapping by Robot Rover," Proc. 6th Int. Joint
Conf Al, pp.598-600, August 1979.

7. Moravec, H. P., Robot Rover Visual Navigation, UMI Research Press,
1981.

8. Moravec, H. P., "Rover Visual Obstacle Avoidence," Proc. 7th Int. Joint
Conf Al, pp. 758-790, August 1981.

9. Giralt, G., Sobek, R., and Chatila, R., "A Multilevel Planning and
Navigation System for A Mobile Robot," Proc. 6th Int. Joint Conf AI,
pp. 335-338, 1979.

10. Thompson. A. M., "The Navigation System of The JPL Robot," Proc. 5th
Int. Joint Conf Al, pp. 749-757, August 1977.

11. Wong. E. K., and Fu, K. S., "A Hierarchical Orthogonal Space Approach to
Three-Dimensional Path Planning," IEEE Journal of Robotics and
Automation, v. RA-2(1), pp. 42-53, 1986.

12. Crowley. J. L., "Navigation for an Intelligence Mobile Robot," IEEE
Journal of Robotics and Automation, v. RA-1(I), pp. 31-41, 1985.

112

13. Oommen, B. J., Iyengar, S. S., Rao, S. V. N., and Kashyap, R. L., "Robot
Navigation in Unknown Terrains Using Learned Visibility Graphs. Part
I: The Disjoint Convex Obstacle Case," IEEE Journal of Robotics and
Automation, v. RA-3(6), pp. 672-681, 1987.

14. Iyenger, S. S., Jorgensen, C. C., Rao, S. V. N., and Weisbin, C. R.,
"Learned Navigation Paths for a Robot in Unexplored Terrain," IEEE
Computer Society, The second conference on Artificial Intelligence
Applications, pp. 148-155, 1985.

15. Kuan, D. T., Brooks, R. A., Zamiska, J. C., and Das, M., "Automatic Path
Planning for a Mobile Robot Using a Mixed representation of Free
space," IEEE Comp. Soc. Conf. on AI applications. pp. 70-74, 1984.

16. MacLennan, B. J., Principles of Programming Languages, Ted Buchholz,
1897.

17. Documentation Group of Symbolics, Inc., User's Guide to Symbolics
Computers, p. 3, CSA Press, 1986.

18. Rowe, N. C., Artificial Intelligence Through Prolog, Prentice-Hall,
Inc., 1988.

19. Symon, K. R., Mechanics, 3rd ed., Addison-Wesley Publishing Co., 1971.

20. Nilsson, N. J., Principles of Artificial Intelligence, Tioga
Publishing Co., 1980.

113

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Department Chairman, Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5000

4. Curriculum Office, Code 37 1
Computer Technology
Naval Postgraduate School
Monterey, CA 93943-5000

5. Professor Se-Hung Kwak, Code 52Kw 5
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

6. Professor Yuh-jeng Lee, Code 52Le I
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

7. Professor Robert B. McGhee. Code 52Mz 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

8. Professor Neil C. Rowe, Code 52Rp 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

9. Major Yong Goo Hwang 1
SMC 2120
Naval Postgraduate School
Monterey, CA 93943

114

10. Captain Jae Doo Jung 1
SMC 1504
Naval Postgraduate School
Monterey, CA 93943

11. Major Myeong Hung Kwang
SMC 2418
Naval Postgraduate School
Monterey, CA 93943

12. Captain Seong Sung Park
SMC 1888
Naval Postgraduate School
Monterey, CA 93943

13. Captain Eun Seok Shin
SMC 2961
Naval Postgraduate School
Monterey, CA 93943

14. Captain In Sub Shin
SMC 2986
Naval Postgraduate School
Monterey, CA 93943

15. Captain Hung Taek Kim
SMC 1930
Naval Postgraduate School
Monterey, CA 93943

16. Tae Sik Yoon
Zip-code 132-062
Dobonggu boon 2 dong
43-7 ho 5 tong 3 ban
Seoul, Korea

17. Hae Sung Jang
Zip-code 302-181
ChungNam Daejeon Seogu Naedong
5 Beongi Jugong Apt. 209 dong 508 ho
Seoul, Korea

18. Captain Do Kyeong Ok 7
Zip-code 422-030
Geonggido Bucheon
Namgu Sangdong 245-17
Seoul, Korea

11.5

